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PREFACE TO THIRD EDITION

1 CURING the fourteen years that have passed since tne ap-

pearance of the second edition of this treatise, the quantum
%

*

tnbory has found much support from those parts of Optics which

are intimately connected with the structure of atoms. It is hoped

that the two Chapters which we have consequently added may

serve as an introduction to the study of this new and important

branch of Physics.

The book has been thoroughly revised and additions have been

made, more especially with regard to the various applications of

interference phenomena. Professor Michelson’s method of measur-

ing the diameter of the stars has a great future before it, and his

device for obtaining accurate values of the tidal distortion of the

e^rth also deserved a place in the new matter which has been

added to the volume.

ARTHUR SCHUSTER.
J. W. NICHOLSON.

November
,
1923.



PREFACE TO SECOND EDITION.

THE changes introduced into this edition are mainly confined

to correcting minor errors and removing obscurities of

expression; a few more serious alterations and some additions, how-

ever, have also been made. The most important of these concerns

the treatment of molecular scattering, which leads to a formula

connecting the coefficient of extinction with the refractive index.

This formula, which was first given by Lord Rayleigh, appeared

already in the first edition, but its importance and great generality

was not sufficiently emphasized.

In view of the recent progress made in establishing accurate

standards of wave-length, and connecting the metre with the

length of a homogeneous wave, it seemed advisable to explain the

methods of measurement in some detail, and to give greater

prominence to the work of Fabry and Perot.

Finally the treatment of white light and of interference

problems has been made more consistent—and I hope clearer—by
introducing the theory of impulses at an earlier stage. As there

is still a certain hesitation to recognize that white light can be

treated as an entity, and that to decompose it into homogeneous

components may obscure the problem, I have tried to remove

one of the stumbling-blocks by defining the word “interference”

in a manner which allows a definite meaning to be attached to the

expression. It is curious that in hardly any treatise on Optics is

there any proper definition of the word. Mascart contents himself

with saying that the principle of interference is synonymous with

the principle of superposition ; but if we adopt this view, we must

admit that rays of light coming from two different sources interfere

with each other, which is contrary to the statement universally

met with in our text-books. It is better to retain in accordance
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with usage a distinction of meaning between two words which

%re both useful, and I hope that the definition I have given may
prove generally acceptable. To be consistent I have had to

change the title of Chapter IV, which in the previous edition

,

carried the heading “ Interference of Light.” I have also ventured

tp inffrodPuce a new term, “ quasi-homogeneous ” light, to describe

*such approach to homogeneous light as is at our command,

^
restricting the word “ homogeneous ” to the ideal case of an

indefinitely extended perfectly regular oscillation. Homogeneous

light is necessarily polarized, and two homogeneous rays produce

interference effects though they come from different sources. If

our experiments show that this is apparently not the case, it proves

tfiat the light we experiment with is not homogeneous. Yet it

is well to have a word which allows us to characterize the radiations

of a luminous gas, which often show great regularity, and the term

I propose seems appropriate.

I have resisted the temptation to add to the later Chapters,

which I know are incomplete, especially in the treatment of

the effects of motion; but—as the title indicates—the book is

intended for an introduction to a theory, the later developments

of which are best studied by consulting the original sources.

My thanks are due to various friends and correspondents who
have kindly pointed out a number of errors, which were left

standing in the previous edition—but I feel a consoling though

unmerited sense of satisfaction at the one serious blunder having

remained unnoticed and, I hope, undetected.

ARTHUR SCHUSTER.



PREFACE TO FIRST EDITION.

THERE is at present no theory of Optics in the sense that the

elastic solid theory was accepted fifty years ago. We have

abandoned that theory, and learned that the undulations of light

are electromagnetic waves differing only in linear dimensions from

the disturbances which are generated by oscillating electric

currents or moving magnets. But so long as the character of

the displacements which constitute the waves remains undefined

we cannot pretend to have established a theory of light. This

limitation of our knowledge, which in one sense is a retrogression

from the philosophic standpoint of the founders of the undulatory

theory, is not always sufficiently recognized and sometimes de-

liberately ignored. Those who believe in the possibility of a

mechanical conception of the universe and are not willing to

abandon the methods which from the time of Galileo and Newton

have uniformly and exclusively led to success, must look with the

gravest concern on a growing school of scientific thought which

rests content with equations correctly representing numerical

relationships between different phenomena, even though no precise

meaning can be attached to the symbols used. The fact that this

evasive school of philosophy has received some countenance from

the writings of Heinrich Hertz renders it all the more, necessary

that it should be treated seriously and resisted strenuously.

The equations which at present represent the electromagnetic

theory of light have rendered excellent service, and we must loo,k

upon them as a framework into which a more complete theory
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must necessarily fit, but they cannot be accepted as constituting

•in themselves a final theory of light.

The study of Physics must be based on a knowledge of

Mechanic^, and the problem of light will only be solved when we

have, digcovered the mechanical properties of the aether. While

we are in fgnorance on fundamental matters concerning the origin

of electric and magnetic strains and stresses, it is necessary to

introduce the theoretical study of light by a careful treatment

of wave propagation through media the elastic properties of

which are known. A study of the theory of sound and of the

old elastic solid theory of light must precede therefore the

introduction of the electromagnetic equations.

The present volume is divided into two parts; the first part

includes those portions of the subject which may be treated

without the help of the equations of dynamics, although a short

discussion of the kinetics of wave motion is introduced at an early

stage. The mathematical treatment has been kept as simple as

possible, elementary methods only being used. I hope that rigid-

ity of method is nowhere sacrificed thereby, while the advantage

is gained that students obtain an insight into what is most

essential in the theory of Interference and Diffraction, without

introducing purely mathematical difficulties such as are involved

in the use of Fresnel’s integrals. Even accurate numerical results

may be obtained by a proper use of Fresnel’s zones.

The second part of the book is intended to serve as an

introduction to the higher branches of the subject. It has not

been my object as regards this more advanced portion to write a

treatise which shall be complete in itself, but rather to introduce

the student to the writings of the original authorities. As a

.teacher, I consider this to be the correct method, being convinced

that students should be encouraged at an early' stage to consult

the literature of the subject. It is a necessary consequence of the

point of view adopted that the treatment is somewhat unequal.

*Where the author has nothing to say which is novel, or may remove
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obscurities, the best thing he can do, is to content himself with

a short summary, referring the reader for details to the available

sources of information. A more lengthy exposition is justified

where a simplification or some new matter can be introduced. It

may be mentioned in this connexion that as far as I l^now the
<c

consideration of absorptive regions of finite range of frequency in

the theory of selective dispersion is new. and has not previously

been published.

I have purposely abstained from entering into details of

methods of observation or instrumental appliances. These belong

more properly to the courses of laboratory instruction.

I hope that the short biographical notices of deceased authors

who have made important contributions to the science will be

found to be of interest.

The greater part of this book was already in type when

Lord Kelvin’s Baltimore Lectures appeared
;

I was still able to

add some references to these lectures, though not to the extent

I should have wished. In some of the later chapters repeated

reference is made to Drude’s Lehrbuch der Optik. Students who

desire to pursue the subject further, should also have access to

Mascart’s Optique and Lord Rayleigh’s Collected Works. My own

indebtedness to Lord Rayleigh’s writings and personal inspiratioh

is greater than can be acknowledged by mere references to his

papers, and I am therefore glad to be allowed to dedicate this

volume to him.

I am obliged to Prof. Wilberforce and Mr W. H. Jackson for

having looked through the proofs of the greater portion of the

work, and favoured me with their corrections and suggestions.

I have also to thank Mr J. E. Petavel for the very valuable help

he gave me in drawing out the figures, and Mr H. E. Wood for

taking the photographs of interference effects which have been

used in preparing the plates.

ARTHUR SCHUSTER.
August, 1904.
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PERIODIC MOTION.

1. The Simple Periodic Motion. A motion which is repeated

at regular intervals of time is called a periodic motion. The simplest

kind of periodic motion is that in which a particle moves in a straight

line, in such a way that its distance, x, from a fixed centre satisfies

the equation

x = a sin <o(t— $) (1),

where t is the time and a and w are constants. The equation shows

that the particle oscillates continuously between two points which are

at a distance a from the centre. This distance is called the amplitude.

The velocity (u

)

of the particle which moves according to (1) is

u = au) cos <o (t - 0) (2),

and the acceleration (/) is

f— — a<s? sin to {t — 0) (3).

The particle passes through its central position (x = 0) when

t — 0 = mir/ai,

m being an integer. The velocity of the particle is then <aa when m is

even, and — <aa when m is odd. Hence the velocity has its greatest

value when x= 0, but may be positive or negative according as the

particle passes through its central position from the negative or from

the positive side.

The valuas of x
,
u and /in the above equations remain unaltered if

t + T be . substituted for r, provided that t = 2m/co. Hence, at regular

intervals of time equal to t, the displacement velocity and acceleration

of the particle return exactly to their previous states. The time r is

caliechthe “ time of oscillation,” “periodic t
:me ” or simply the “ period

”

of the motion.

1s.
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Equations (1) and (2) alter their form if a different constant be

substituted for'0. Thus by writing w0
x
— ojO + \tt, we obtain

x = a cos w (t — 0j) (1 a),

u = - wd sin w (t— ^i) (2a).

When dealing with one particle only, fhe origin of time may be chosen

according to convenience, so that we may adopt the simpler foi~ms

obtained by making 0 or 01 equal to zero in the previous equations.

I proceed to show that equations (2) and (3) are necessary con-

sequences of (1).

In Fig. 1 consider a point P moving uniformly in a circle of radius

B

a = OA.

Let OMbe the projection of OP on a diameter AB.
If the angle POM be denoted by <j>, and the distance

OM by x,

x — a cos <£.

Fig. 1.

t = 61 ,
and

If the particle passes through the position B when

takes a time r to complete a whole revolution,

Hence

= 2tt (t — $i)/t.

x — a cos w (t - 0
1),

where ft) = 27t/t.

This shows that the point M moves in the simple periodic motion

indicated by equations (la) or (1) and we have the important pro-

position that this periodic motion may be represented as an orthogonal

projection of a uniform circular motion. The periodic time r is the

time of revolution of the point P, the amplitude is the radius of the

circle, and the constant 91 represents the smallest positive value of the

time at which the particle reaches its extreme position on the positive

side.

The proper expressions for the velocity and acceleration of the

pointM are obtained by considering that these are equal to the pro-

jections on AB of the velocity and acceleration of P.

If the velocity ofP be denoted by TJ :

u = - U sin <f>

~—U sin <o (t — <?i).

The minus sign is a consequence of the negative direction of the

velocity of M when <f> is positive. The whole circumference of the

circle being described in a time t, it follows that

U - 2ttajr — a<».

w = - aw sin a) (if — 9X).Ilence finally
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The expression for the acceleration of the point M is obtained in a

similar manner. The acceleration of the point P is directed radially

inwards towards the centre of the circle and is equal to U^ja, and the

acceleration f of M is the projection of this acceleration upon the

diameter AOB.
/= - (U2

cos 4>){a

= — aw2 cos to (t— 6j).

A periodic motion may be of a more complicated character than

that indicated by the above equations. If we were to take e.g. the

orthogonal projection of a particle moving with uniform speed in an

ellipse, we should get a motion which is strictly periodic, but which

could not be represented by the simple equations we have given.

Even the oscillations of a simple pendulum can only be approximately

represented by our equations, the approximation being the more nearly

correct, the smaller the amplitude.

I shall call a “simple” or “normal” oscillation one which can be

represented as the orthogonal projection of a uniform circular motion.

A normal oscillation is identical with that often called “harmonic

motion.” I avoid this term because “harmony” means a relation

between different things, and not a property of any particular thing.

The character of the motion of a particle performing normal

oscillations is completely determined by the amplitude and period, but

the state of motion at any time requires a third quantity for its

'definition. If the oscillation is considered to be the projection of a

uniform circular motion, it is convenient to take the angle between the

radius vector OP (Fig. 1) and some fixed radius as the quantity

defining the state of motion. This angle is called the “phase” of

motion, and is to a certain extent arbitrary, as the fixed radius may be

drawn in any direction.

If we express the motion in the form

x = a sin <o (t - 6)

it is usual to define zero phase as the phase at the time the particle

passes through its mean position in the positive direction. The radius

of reference will then be 00 (Fig. 1) at right angles to AB
,
and

will measure the phase.

On the other hand, if we choose the form

X = a COS w (if - 0i)

for the equation of motion, we may define zero phase to be the phase

at the' time the particle reaches its extreme position on the positive

side ;
then w (t — dj will be the phase at any time during the subsequent

metifln, the radius of reference being OB, or the positive branch of the

•direction on which the motion is projected. The want of uniformity

in the choice of the direction which defines the zero phase, causes no

1—2
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inconvenience, as we are nearly always concerned with differences of

phase, and this difference is perfectly determinate. Thus if in Fig. 6

two periodic motions are represented by the projections of the circular

motions of two particles P and Q on the same straight line, the angle

POQ will always represent the difference between the phases, whatever

line is taken to be the direction of zero phase.

The difference in phase between two normal periodic motions having

the same period remains constant.

Representing the two motions by

xx = ax cos o> (t - 0X),

x2 = a2 cos <o(£- 02),

the difference in phase will be

to (t — 0,) - to (t - 02)
= to (02 - 0j),

which proves the proposition, as t disappears in the final expression.

2. Normal oscillations under the action of forces varying
as the distance. The equations for the displacement x and the

acceleration / of a particle which has a simple periodic motion are

x~a sin w (t — 0X),

f=- au? sin w (t — 0j).

By combining these we obtain the relation :

f=-u>2x (4).

This is an equation of great importance, for it gives the necessary

condition which must be satisfied in order that a particle may execute

normal oscillations when acted on by a force directed to a centre.

This condition is, that the force is proportional to the distance of

the particle from the centre.

Consider a particle constrained to move in a straight line and
attracted to a fixed centre by a force F, which is proportional to

the displacement. If m is the mass of the particle and F= - n2x

j. F n2

f— — = x.m m
This agrees with (4) if w2

is equal to n2jm, and hence r the time of

oscillation is obtained in terms of m and n
,
for

_ 2tt _ 2ttsJm~
a>
~ n

As all forces of nature diminish with increasing distance, the

particular law of force which produces normal oscillations may not at'
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first sight seem to be of practical importance, it is quite true that

bodies moving under the action of such central forces as occur in nature

would not perform normal oscillations; but when a body, originally at

rest under the action of opposing forces, is slightly displaced, the forces

act so as to bring it back to its equilibrium position. The resultant

of the forces on which the. subsequent motion depends increases in

gtneral with its distance from the position of equilibrium, and when
the displacement is small may be taken to be proportional to it. As
this is

#
an important fact, it is well to give a few illustrations.

Example 1. The Simple Pendulum, A heavy particle is suspended

from a fixed point by a light string of length l and is set in motion.

Let 0 (Fig. 2) be the angular deviation of the string from the

vertical. The only forces acting on the particle

are its weight and the tension of the string.

The particle is constrained to move in a circle,

and the force which tends to draw back the

particle to its position of equilibrium is found

by resolving the acting forces along the tangent

to the arc.

If m is the mass of the particle, its weight

is mg. The tension of the string has no

component in the direction of the tangent to

the arc, and therefore the resultant force acting

on the particle is mg sin 0.

If 6 is so small that we can neglect 6% com-
pared to unity, we may replace sin 6 by the angle 0, so that the forceF
acting on the particle is

:

F= — mgO

= ~m9j (5),

where s is the displacement of the particle along the arc corresponding

to the angular displacement 6.

This equation shows that the particle moves along the arc, as if it

were subject to a restoring force which is proportional to the distance

of the particle from the lowest point of the arc. Therefore the particle

will describe normal oscillations about this point. The acceleration of

the particle*at any distance s is Fjm or - gs/l. By comparing this

with (4) it follows that wa = gjl or that the period is determined by

This is the well known equation for the time of oscillation of a
simple pendulum.
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Au

Fig. 3.

Example 2 *. Oscillations produced by volume elasticity of gaseous

pressure.

Let an airtight vessel be closed by a weighted piston A, which

. can move without friction in a cylindrical tube attached to

iL a the vessel. This piston will have a definite position of

equilibrium. If it is forced down below this position and

then released, it will be driven up again by the increased

pressure of the air within the vessel. The momentum it

then acquires will carry it past its position of equilibrium.

The air in the vessel expands to fill the larger volume,

its pressure is accordingly reduced, and it is unable to

counterbalance the weight of the piston and the external pressure.

The piston is thus driven in again, and, the process repeating itself at

regular intervals, periodic oscillations are performed.

We proceed to find the time of oscillation of the piston. Let Fbe
the original volume of the vessel and P the pressure of the enclosed

air. Suppose the piston is pushed down until the volume is diminished

by a small quantity v and the pressure is increased by a small amount

p. The volume and pressure are then (V-v) and (P +p) respectively.

We shall disregard the inertia of the air and assume the motion to be

sufficiently slow to allow the change to be isothermal. We have then,

applying Boyle’s Law

:

VP = (V-v)(P+p)

or pv -p V- vP.

If the displacements are small, so that the product of the two small

quantitiesp and v may be neglected,

pV= vP

or p = P v

r
Denote by A the area of the base of the piston. Then the resultant

force on the piston, when the volume of the vessel is diminished

by v, is

F=pA
AP

If x is the distance through which the piston moves

v =—

A

. x

and F=--*.x.

* Examples 2 and 3 are taken from Lord Rayleigh’s Sound where tlfey are

treated in a different manner.
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Thus the force acting on the piston is proportional to the dis-

placement of the piston from its equilibrium position and is always in

the opposite direction to the displacement. If M is the mass of the

piston, its acceleration is FjM or Hence the time of oscilla-

tion is given by

T= 2TT
MV
A 2P‘

If the vessel were a cylinder of length l and area A, so that V- Al,

and if also the pressure were entirely due to the weight Mg of the

piston, we should have

p _Mg
A ’

and by substitution it would follow that

i.e. the time of oscillation of the piston would be exactly the same as

the time of oscillation of a simple pendulum, the length of which is

the same as that of the cylindrical vessel.

Example 3. Normal Oscillations due to the tension of a string.

Let a string attached to A pass over a
peg B at the same level as A, and carry

at its end a mass M. If a particle P of

mass m be attached to the string half-

_ m way between A and B, and the particle

Pig, 4 ,
be displaced vertically downwards until

it coincides with Q, the tension T of the

string will have a resultant vertically upwards which, neglecting the
weight of the string, is easily shown to be

2Tx

da2 + x2 *

where 2a is the distance AB and x the displacement PQ.
If x is so small that Pja2 may be neglected, and if m is so small

compared to M that in the position of equilibrium the displacement of

P is a small quantity of the second order, we may disregard the weight
of P in calculating the tension which will then be equal to Mg. The

acceleration,ofP is therefore —
, and hence the time of oscillationam

/ am

. 3 . Energy of a Particle in Periodic Motion. If a particle

whose mass is m is moving with a velocity v, its kinetic energy is %mv\
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If the particle is executing normal oscillations, its velocity at any

time t is u = aa> cos « (t — &).

Therefore its kinetic energy E at this instant is

E = cos2
co (t~ 6)

= {1 + cos 2w (t — 0)}.

The second term on the right-hand side has values ranging fr^m

+ 1 to — 1, and is as often positive as negative, its average value taken

over one complete period of vibration being zero.

If U=a<a is the maximum velocity of the particle, it follows that

the average value of E is \ma2
o>
2
or \mTJ2

. This proves that the

average energy is half the maximum energy.

The average value of the kinetic energy of a vibrating particle is

taken as the measure of the intensity of the vibration, which has just

been shown to be proportional to the square of the amplitude as long

as the mass and period remain the same.

In the simple cases we have been considering no energy leaves the

particle, and hence all changes of kinetic energy must be compensated

by corresponding changes in the potential energy. Now the kinetic

energy E varies, being at its maximum of \mU2 when the particle is

passing through its central position and falling to zero when the dis-

placement is a maximum. If the constancy of the total energy is

maintained, it follows that the potential energy P must satisfy the

equation p + _ a congtant.

Assuming the potential energy to be zero when the kinetic energy is at

its maximum, the value of the constant must be §mU 2
. Hence

P=im(U2 -u2

)

= Jm#2
u)
2
{1 — cos2 (o (i — 6)}

= sin
2 w(t- 6)

—

Thus for a body performing normal oscillations the potential energy is

proportional to the square of the displacement of the particle from the

centre of force. This proposition may be proved independently from

the work done by the forces.

4. Composition of Periodic Motions. If a single particle is

acted upon by two distinct agents, each of which, if acting separately,

would cause the particle to perform simple periodic vibrations, the

question arises—What is the resultant motion on the supposition that

each produces its own effect ?

We consider first the case in which the two component vibrations

are in the same straight line and have the same period.
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Let the two amplitudes be ax and «2 and the common period, 2irf(o.

At any instant t, the displacement xx ,
due to the first oscillation,

would be
xx = ax cos w (t — 6X)

and that due to the second oscillation

x2 = a2 cos uy(t — O.j).

Since the two displacements are in the same straight line and each

produces its own effect, we can combine them algebraically and write

for the*resultant displacement

where

Now write

X= Xi + X2

= ax cos oo (t - 6
X) + a2 cos oo (t - 02)

=P cos oot+Q sin <at
,

P = ax cos (tid
x + a2 cos w&d

Q = ax sin (a6x + a2 sin oo02J

P =B cos 8

(6).

Q = 11 sin S,

so that flr =P2 +Ql and tan 8 = Q/P.

Then x =B (cos (at cos 8 + sin (at sin 8)

= 22 cos ((at -8) (7).

It is seen from the last equation that the two component simple

periodic oscillations have combined to form a resultant simple periodic

oscillation with the same period as the component oscillations, but with

a different amplitude and phase.

The amplitude of the resultant oscillation is 22,

where 2P =P*+Q2

= (ax cos (tiOx + a2 cos w02)
2 + (ax sin o>0

a + a2 sin w02)
2

= a* + a2 + 2ax a2 cos w (02 - 0i)*

Therefore the amplitude 22 = J{ax + a£ + 2ax a.2 cos w (02 - 02)} is equal

in magnitude to the diagonal of a parallelogram having two adjoining

sides ax and a2 ,
the angle between the sides being w (02 — 6X).

We may now show that the diagonal OP not only represents

the resultant oscillation in amplitude, but also indicates the phase.

By separating the quantities ax and «2 in the equations (6) we
obtain the two equations :

P sin — Q cos a>02 = ax sin w (02 — 0X),

P sin (ti$x — Q cos (ti6
x
=- a2 sin w (02 — 6

X).

If in these we substitute P = 22 cos 8 and Q = 22 sin 8, we find

22 sin (w02 — 8) = ax sin u> (02 - &
x),

22 sin ((ti8x — S)= — a2 sin o> (02 — 6X),
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& 1*

or, expressed otherwise

: «2 : B = sin (<*>02
— S) : sin (8 — : sin <o (02— . . .(8).

If a parallelogram be described with OA = ax ,
and OB = (h, as

adjoining sides, and with an angle AOB
equal to the difference in phase « (<92 — 0X),

between the two oscillations which are to

be combined, the geometry of Fig. 5 shows

that

«i : a2 : B = sin BOP : sinHOP : sirrA-OPs-

A comparison between this relation and

(8) shows that

P0P=o>02 — S and AOP — 8 — w0
1 ,

which means that the angles between the diagonal OP and the two

lines ax and a2 represent the difference in phase between the resultant

oscillation and the two component oscillations.

The proposition that normal oscillations in the same straight line

may be combined like two forces is of primary importance, and a second

proof of it is therefore given.

We represent the two periodic motions by the orthogonal projec-

tions OMx and OM2 of two points P and Q,

moving with uniform speeds round two circles

(Fig. 6).

The two radii OP, OQ represent the ampli-

tudes of the respective oscillations. If the

periodic time is the same the radii OP, OQ
revolve with the same angular velocity, and

therefore the angle POQ remains constant.

Complete the parallelogram OQRP and imagine

a third point at the angle B. Then the point at B will describe a

circle in the same time as the points P and Q, and its projection 8
on the diameter AB will perform a simple periodic vibration.

But 08=0MX+0M2

since the projection of OB must equal the sum of the projections of

OP and OQ.

Hence the displacement of 8 is always equal to the sum of the

displacements of Mx and and the motion of 8 will be the resultant

of the motions ofMx and M*.
t

The figure shows that the resultant amplitude OB is found from

the amplitudes OP, OQ by the parallelogram construction and that

this construction enables us to determine not only the amplitude but

also the phase of the resultant motion. For, if we measure phases

from the direction determined by the maximum positive displacement,
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then in the figure, the phase of the particle M, is the angle POS and

the phases of M2 and S are measured by the angles QOS and BOS
respectively.

Hence the direction of the diagonal OB indicates the phase of the

resultant oscillation.

#
5. Combination of any number of Oscillations. Having

seen how two linear oscillations, which are in the same straight line,

can be combined, it follows that any number of such oscillations can be

combined by taking the resultant of any two of them, and combining

with it a third oscillation and so on, until we reach the final resultant.

In short, a system of such oscillations is reduced to a single resultant

in exactly the same way as a system of forces acting at a point. Any
proposition relating to a system of forces can be made to apply to

a system pf linear oscillations of the same period which take place in

the same straight line.

According to a well known proposition in Statics a system of

n forces OPlf OPa OPn has a resultant which coincides in

P. p.

Fig. 7.

direction with OG and is in magnitude equal

to nOG, if G is the centre of inertia of

particles having equal masses, placed at

points P„ P2 Pn . We make use of this

proposition to find the resultant of a large

number of oscillations of equal amplitude

and having their phases in arithmetic pro-

gression.

The oscillations will be represented by
the lines OP,, OP2 ,

OP3 , OPn (Fig. 7),

such that all the points P are equidistant

and lie on the arc of a circle. If the constant phase difference

between two successive oscillations is very small, the problem of finding

the resultant resolves itself into the determination. of G
t
the position

of the centre of inertia of the arc P1Pn-

The distance OG is known to be equal to
a sin

-
a
-where 2a is the

a

angle of the arc P,Pn and hence a is the angle between OG and either

OPi or OPn . The resultant vibration has therefore an amplitude equal

to na sin a/a and a phase which lies halfway between the phases of the

first and last vibrations. If all vibrations were of equal phase, the

resultant amplitude would be na.

Hence we may formulate the following important proposition

proved by the above reasoning

:

Normal rectilinear oscillations which have equal amplitudes and
periods, and take place along the same straight line such that any two
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successive oscillations have a phase difference which is small and equal

for each successive pair, combine together into a resultant oscillation

which has the same period, and a phase halfway between that of the

first and last oscillation. The amplitude of the resultant oscillation

is R sin a/a where 2a is the phase difference between the two extreme

oscillations and R the amplitude of the resultant in the special

case that the phase differences vanish. The values of sin a/a £nd

sin
2 a/a2

are plotted as ordinates as against a as abscissa in Fig. 70,

Art. 54.
. %

6. Combination of oscillations in directions at right angles

to each other. Let a particle M (Fig. 8) describe simple periodic

oscillations in the direction OX about the centre 0,
' f its motion being represented by the equation

_ x-ax cos tot.
jP

Also let a second particle N perform oscillations of

the same period, about the same centre 0, but in

o m x
the direction 0Y perpendicular to OX. The motion

Fig. 8. ofX may be represented by the equation

y = a2 cos (tot + 8),

8 expressing the difference of phase between the two oscillations.

Now imagine a third particle P to move in such a way that its

projections on OX and OY always coincide with the points M and N.
The problem is to investigate the motion of the particle P. Before

treating the question generally we may take a few cases, which are

simple and of special importance.

Case I. Let 8 = 0. This means that both M and N pass through

the centre 0 at the same instant, and that therefore the point P
passes through 0.

The equations of motion ofM and N are respectively

:

x = ax cos tot,

y-a2 cos tot.

By eliminating the time t from the equations, we obtain a relation

between x and y, which determines the path described by P.

mu V ^2
Thus — = — or ?/= — #.

ax a2 cb\

This is the equation of a straight line passing through the origin 0.

The cosines of the angles which OP forms with OXand 0 Y>respectively

are a2j ax
2 + a2 and ct-JJof + a2 . Projecting x and y on OP we see that

the distance (r) of P from the origin is r— *Ja* + a£ cos tot. Therefore

the motion of the particle P is a simply periodic linear oscillation in

the direction OP, having the same periodic time as its compSnent

vibrations, and an amplitude equal to J«q
2 + a2 .
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Case II. Let 8 = ±-. This means that the particle M is

passing through its mean position when N has its maximum dis-

placement.

The equations of motion are now

:

CO = COS (i)t \

( tt\ [ (^)

y = a* cos f ®$±
gJl

= + a2 sin wjf.

Eliminating t by squaring and adding the two equations, it is found

that

x
ac

r_
a£

= 1 .

Hence the path described by the particle P is an ellipse. In the special

case of a
1
= a2 the equation becomes that of a circle of radius ax .

The time occupied by P in moving round the ellipse or circle is the

same as the periodic time of the linear vibrations. It is easily seen that

if the phase of M moving along OX exceeds by a right angle the phase

ofN moving along 0 Y, the motion will be from ijhe positive axis of x
to the positive axis of y,

for according to equations (9) the particle P
crosses the positive axis of x when t = 0. When tt/2« or after a
quarter of a period, Pis on the negative or positive branch of OF
according as the upper or lower sign is taken. Hence the positive

sign in the second equation (9) indicates a clockwise and the negative

sign an anti-clockwise revolution. The axes of the ellipse in which P
moves are coincident with the axes of x and y.

Case III. or General Case. Let 8 now have any value whatever.

The equations of motion are

x — ax cos

|

Then

y = a2 cos (<nt + 8)J

—
- cos ait cos 8 — sin (at sin 8

$2

oc= — cos 8 - sin eot sin 8.

Ct\

X
•\ sin o)t sin S - — cos 8 — —

.

<h

x
and from (10) : cos tot sin 8 = — sin 8.

Qj\

Squaring and adding we get

’
2 _ i*' O xy f /n\
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This is the equation of an ellipse the axes of which are not now,

in general, parallel to the x and y axes (Fig. 9). By putting 8 = 0
7T

or S =+- in the general equation we return to the special cases I.

and II.

In the customary treatment of the kinematics of a particle, the

point P is said to possess simultaneously

.f velocities along OX and along OY which are

respectively equal to the velocities of its pr«-

-f -J—x jections. Adopting this mode of expression,

we may say that a particle having two simple

periodic motions of equal period at right angles
' to each other, moves in general in an ellipse, the

time of revolution being equal to the period of the oscillation. In

special cases the ellipse may become a circle or a straight line.

If two periodic motions at right angles to each other be combined,

we may determine the direction and magnitude of the principal axes

of the resulting elliptic orbit. We introduce for this purpose a second

system of coordinates inclined at an angle y to the original one. The
new and old coordinates are connected by

x = x cosy -y smyj
.

,
12

s

y = x sin y + y' cos yj
^ ‘

Substituting these expressions into (11) it is found that the factor of

x'y is zero, when
,

_ 2a^a2 *
tan 2y =—g—

—

2 cos 8,.

au/ilv2 $
2 2 COS 8,.
-«2

or introducing an auxiliary angle ^ defined by tan f = a2/«i the

relation becomes
tan 2y = tan 2ij/ cos 8 (13).

The vanishing of the factor of x'y' implies that the ellipse is now
referred to its principal axes and y therefore is the angle which these

principal axes form with the original directions of vibration. The
magnitude of the semi-axes is found in a similar manner.

In investigating elliptic polarisation of light the converse problem

sometimes presents itself : the ratio of the principal axes of an elliptic

orbit and their inclination to fixed directions being found by experiment,

we may require to calculate the ratio of amplitudes and the relative

phase of the two normal vibrations in the fixed directions into which

the elliptic motion may be resolved.

To solve this problem we make use of two -well-known propositions

of analytical geometry relating to the equation of a conic : •

px2 + qif + 2cxy = 1 (14),



PERIODIC MOTION 156]

.(16).

which, transformed by turning the axes of reference through an angle y,

becomes px'2 + Qy'2 + 2 Cx'y = 1.

The two propositions referred to are then expressed by

P + Q =p + q |

and PQ - C2 —pq — c~j
^

If in the transformed equation the ellipse be referred to its principal

axes 0-0,
and we may then proceed as follows :

P + Q ^ p+q
\fPQ Jpq — c2

We now substitute the values of p, q and c which are found by com
paring (11) and (14) and introduce an auxiliary angle 4', defined by
tan 4> = BjA where A and B are the semi-axes of the ellipse and there-

fore equal to P~i and respectively. Equation (16) then becomes

sin 24' = sin 2$ sin 8 (17).

In the present problem 4' and y are known, while
\J/
and 8 are to be

determined. Equations (17) and (13) suffice for the purpose. To
separate the variables we derive from (17)

cos 2 4' = cos 2^ n/i + cos2 8 tan2 2 i/'

which with the help of (13) becomes

cos 2if cos 2y = cos 2^ (18).

This determines
\f/.

Combining the last equation with (13) we find

cos 24f sin 2y = sin 2i/r cos 8 (19).

Finally the division of (17) by (19) gives

tan 24f = sin 2y tan 8 (20),

which determines 8.

From (10) we obtain for the components of velocity u and v

u2 = to
2 (a 2 — x2

),

v2 - <o
2
(a.

2 - y
2
).

Hence for the velocity in the elliptic orbit

U2 = u2 + v2

= w2
(a 2 + a2

2 - r2

) (21),

where r is the distance of the moving point from the origin. We
conclude that the motion of a point in an elliptic orbit can only be

represented "by the superposition of two periodic motions at right

angles to each other if the velocity in the orbit follows a perfectly

definite law. If that law is satisfied the motion resolved along any

axis is simply periodic.

It has been shown that a uniform circular motion may be resolved

into, two simple periodic motions at right angles to each other.
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Conversely it may easily be proved either geometrically or algebraically

that a simple periodic motion may be resolved into two circular motions

of equal amplitudes and opposite velocities.

Any number of simple periodic motions in a plane, having the

same period but differing in amplitude and phase, may be combined

into an elliptic motion. This follows at once because a periodic

oscillation may be decomposed into two along the same fixed axes

at right angles to each other. Adding the components which lie in

the same direction according to Art. 4 and then combining the two

resultant oscillations at right angles to each other we obtain the

resulting elliptic motion.

Any number of simple periodic motions in a plane, having the

same period but differing in amplitude and phase, may be combined

into two uniform circular motions in opposite directions, but not

necessarily along circles of equal radii. This must be true because each

of them may be decomposed into two opposite circular motions, and

all circular motions having the same direction may be combined Again

into a uniform circular motion.

It follows that any elliptic motion in which the velocity satisfies

the condition (21), may be considered as being composed of two

uniform circular motions in opposite directions.

To prove this algebraically, let the rectangular projections of one

circular motion taking place anti-clockwise be oq cos wt and ax sin wt and

that of another circular motion taking place clockwise a2 cos <«>(£ — 0)

and — a2 sin w(t— 6) so that their combined motion is represented by

x = ax cos wt + a2 cos w(t- 0),

y = sin wt - a2 sin w (t— 0).

Eliminating t in the usual way, gives for the elliptic path the

quadratic equation

a

f

(«!
2 + ai - 2axa2 cos «>0) + y

l (a? + a2 + 2aja2 cos «>0) — Axyaxa2 sin o>0

= (a?-a£y.

The three available constants alt a2 ,
and 0 may now be determined

in terms of the three constants which determine the elliptic orbit.

7. Composition of Linear Vibrations of slightly different

Periodic Times. We now consider the composition of two linear

vibrations in the same direction but having slightly different periodic

times.

Let the displacements be represented by

x1 = a cos o>it,

x2 = a cos w2t,

assuming, for simplicity, that they have the same amplitude. The
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resultant vibration is given by
x= + x2 = a cos + a cos <>>2t

= 2a cos
Gl! -f 0)2

2
if. cos

Ml — Cl>2

2
t.

The factor cos
0

Â
t is periodic, varying in value between +

1

and — 1 and going through a complete period in the time Air/fa - w2).

Now this time is great (because m2 — w2 is small) in comparison with

tj}e time 4»/(o>1 + <d2) which is the period of the other factor. We may

therefore consider 2a cos -1-—

1

to be the slowly varying amplitude
A

of a simple oscillation, having a period 47t/(<jo1 + w2).

The intensity I of the resultant vibration is proportional to the

square of the amplitude, so that

I cc 4<*
2 cos2 — 0)2

1
A

\

cc 2a2
{1 + cos (wj — o>2) t}.

Hence the resultant intensity varies between 4a2 and 0, and the time

interval between two successive maxima of intensity is 27r/(w1 - w2).

An important application of this equation is made in the theory of

sound. When two notes of nearly equal pitch are sounded together,

beats are heard, and according to the above, the periodicity of the

beats is 2tt/(w1 — w2), if 2tt/o^ and 27t/w2 are the periods of the two notes.

As the number of vibrations per second (the frequencies) are inversely

proportional to the periods, it follows that when two notes have

frequencies ni and w2 ,
the number of beats per second is - n2 .

8. Use of imaginary quantities. The mathematical treatment

of oscillations may often be made more concise by the introduction of

imaginary quantities. Writing i= J— 1, we make use of the symbolic

expression
= cos

<f>
+ i sin *.

If* = oit, it is seen that both the real and imaginary part of e%
represents a simple periodic motion. The same is true for ce where

the “ amplitude ” c, may be real, imaginary, or complex. Writing,

to separate the real and imaginary parts, c = a + ib, and

r cos 8 = a

r sin 8 — b
(22 ),

it follows that c = re48 and ce^ = rel(-4,+B\

This represents a normal oscillation of amplitude r, equal to

Ja?+H>2 and having a phase 8 determined by

tan 8 = bja.

s. 2
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If the factor of has the form

_ a + ib
c7aT1b

the fraction is reduced to the standard form by multiplying its

numerator and denominator by A -iB.

,TT , . (aA + bB) + i (bA - aB)
We derive c = v

-755 •

A 1 +B2

The amplitude and phase of the real part of ce^ are now obtained

from

:

9 a2 + b
2

\
r ~ A 2

+
\

-

. . bA-aB[ (23)-

tan 8 =
aA + bB

For the particular case that A — a and B = — b,

C

a

2 - b2) + 2iab
C ~ W+& *

and r = 1 ;
tan 8 = .

a2 - b2

d + l\)

According to the above, an expression of the form ^ can

always be brought to the form reA where r and 8 satisfy equations (23).

The transformation by which a fraction containing an imaginary

part in both the numerator and denominator may be expressed in the

form re~s
is conveniently conducted as follows

:

If the expression to be reduced is

n a + ib . . a — ibP =—
A
—^75: write ty

= —
A
—

A + iB ’ ^ A-iB
when Q is obtained from P by changing the sign of i. By comparison

with (23) it may then be easily shown that

PQ - r2 and ^ = i tan 8.

a — ib

A-iB

i tan 8.



CHAPTER II.

KINEMATICS and kinetics of wave motion.

9. • Kinematics of Wave Motion. Every one is familiar with

the appearance of a train of waves propagated over a surface of water.

As a rule, such surface waves alter their shape as they proceed and

they are not therefore very good examples o^ simple wave propagation.

We say. that a wave has “constant type” when the outline of the wave

Always remains the same. Waves of sound and waves of light pro-

pagated through a vacuum are waves of constant type.

Consider a row of particles lying on a straight line, which we shall

take to be the axis of x. Let the particles be displaced in a direction

at' right angles to x, the displacement being represented by the equation

y =/(*).

If the displacements at each point alter in such a way that a line

joining all the particles seems to travel with velocity v in the positive

direction without change of shape, the equation of the outline at any
time t may still be represented by the same equation y =f(x), provided

the origin from which x is measured is shifted through a distance vt.

Referred to the old origin, the equation representing the outline will

be given by y =/{x — vt). This then is the general equation of a wave
of constant type propagated in the positive direction with a velocity

v, and every wave propagated without change of shape must be ex-

pressible in this form. The argument does not turn upon the

displacement y being necessarily at right angles

to the direction of propagation, but it may be,

as in the case of sound waves, along that direc-
Fig. 10. tion, and the equation would hold equally for

displacements of any kind. By giving to v a negative sign, we obtain

the general Aquation of a wave propagated along x in the negative

direction.

‘ As an example we may consider the equation

# y = ae -(x~vt>

2

which being of the form y =f (x - vt) represents a wave motion.

2—2
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Putting t = 0 we obtain for the shape of the wave, the outline

y = ae~ x*.

The equation represents therefore a wave of the form shown in Fig. 10

propagated with a constant velocity v in the positive direction.

Returning to the general equation

y=f(x~vt)
we obtain by differentiation

§2L = f'.
dx J ’

Also

d y f .

da?~J ’

• ^1 = 0?’
• df dx%

(1 ).

(2).

The last equation is the differential equation which characterises

a wave motion. Its complete solution is

y =f(x— vt) + F(x + vt)

where/and F are arbitrary functions.

As an important special case we take

y = a cos (W -px) (3).

By comparison with the general expression, it is seen that wjp is

the velocity of propagation. If y is measured at right angles to x, and
if each point always keeps the same distance from the plane x = 0, the

motion will be rectilinear. For a given x the equation is of the form

y = a cos (W + S)

and every point therefore performs normal oscillations having a period

27r/<D.

The outline of the wave is obtained by taking any value of t,

e.g. t = 0, when

y = a cospx

will represent the shape of the wave and its position at that time.

A portion of the wave form which reaches out to infinity in both

directions, is represented in Fig. 11. The figure illustrates the method

of drawing the curve. Equidistant points divide the circumference of

a circle into equal portions. In the figure that number is twelve, but
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could be increased if it is desired to obtain a greater number of points

in the curve. Other equidistant points are taken on a straight line

QA passing through the centre of the circle. Drawing perpendiculars

to OA through each point on that line, and lines parallel to OA through

the corresponding points of the circle, the intersections of the two sets

of lines mark the points on the curve. The wave-length is the distance

between the two nearest points which have the same phase. If A be

the wave-length, so that the phase is the same for x and x+X, it follows

that pX niust be equal to 2r, or p = 2irjX.
^

From v = t»/p and <»<= 27r/r, we obtain v = X/t.

In terms of A and r we may write equation (3)

y-a cos 2tt

The difference of phase between two particles at distances and x2

from the origin, as obtained from this equation, is

2TT

T (x2 - a?x).

In the further consideration of wave motion, we shall consider prin-

cipally waves the displacement of which can be represented by the

equation (3).

10. Application of Fourier’s Theorem. By an important

theorem due to Fourier, any function f(x) may between fixed limits

x=—c and x= + c be represented as the sum of a series, in such a way
that writing a = ttx/c

f(%) = a0 + a1 cos a + a2 cos 2a + a3 cos 3a +

+ bi sin a + b2 sin 2a + b3 sin 3a + (4).

The constants a0 ,
a1} blf b2 ,

etc. may be determined from the function

f and we may for our present purpose fix for f(x) outside the specified

limits the values calculated from the series on the right-hand side.

If waves of all lengths are propagated with the same velocity v, we
may obtain fhe shape at any subsequent time for waves travelling in

the positive direction by writing in all terms on the right-hand side

x — vt for x, and having done so we may add the series again, when it

is seen that the sum now becomes f{x-vt). Hence the condition

that normal waves of all lengths travel with the same velocity carries

with it the consequence that waves of any shape may be propagated
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without change of type. On the other hand, if as in the case of light-

waves travelling through a dispersive medium, the velocity ofpropagation

depends on the wave-length, there must always be a change of type wrhen

waves which are not of the simple cosine or sine shape are propagated.

11. Waves travelling along a stretched string. Let us now
consider the kinetics of wave propagation.

Consider a small portion AB of a curved string which is acted on

by equal tangential forces at the ends. The
resultant of the forces bisects AB and passes

through G the centre of the circle of curvature

of AB. If 2 9 be the angle subtended by AB
at C, the intensity of the resultant is 2 J'sin 6,

or 2T0 if 6 be sufficiently small. As 2r6 is the

length of the arc AB, if r is the radius of curvature, the “resultant

force per unit length ” acting on AB is Tjr, i.e. equal to the product

of the tension and the curvature.

A. B

Let now a string be only slightly curved, so that every part of it

lies near a straight line which shall be the axis of x. The tangent

of the angle of inclination
(
[dyjdx) may be supposed to be sufficiently

small to allow its square to be neglected. The force acting on an

element ds at right angles to its length has been proved to be I'dsjr
,

and we may take the same expression to represent that component of

the force which lies in the y direction.

If p be the mass per unit length, and hence pds the mass of the

length ds, the equation of motion is :

, cPy Tds
pds

df
=~

i

. tfy_T 1
*

* df P 'r'

Again neglecting >
the curvature is equal to

,
hence

ffy _T dry

dt3
p da?

K ,m

Comparing this equation with (2) it is seen that JTjp is the velocity

of the waves which are propagated along

the string.

Let Fig. 13 represent a portion of a

string stretched to a constant^tension by a

weight P. Let it be displaced by outside

forces until it occupies a position such as

that shown in the figure. If the constraint

is suddenly removed, the tension of the string will, by what precedes,

ua. ^

n

Fie. 13.
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act in such a way that there is at each point a resultant force towards

the centre of curvature. Hence the point B will begin to move
downwards while A and C move upwards. IfAH has been previously

straight, this portion of the string is in equilibrium, but as soon as A
is lifted up, the point at which the straight and curved portions join,

has been moved to the left. If A' is that point, AA' which was

previously in equilibrium, has ceased to be so. It follows that a dis-

turbance will set out from A and travel from right to left, with a

velocity which has already been found to be VT/p. A similar reasoning

shows that the displaced region AG will also send out a disturbance

from C towards K. Two waves travelling in opposite directions will

therefore start from ABC.

Now we know from observation that it is possible for a disturbance

to travel in one direction only, and it is a matter of interest to examine

the conditions under which a displacement such as ABC may be propa-

gated forward only or backward only. In orde^j that it shall travel only

forward,' it is clearly necessary that the point A should remain in its

position in spite of the force acting upwards, and this is only possible

if at the time to which the figure applies, A has a velocity downwards,

of such magnitude that the force acting at A just destroys the velocity.

This force is of the nature of an “impulse” because if there is a

discontinuity of slope at A, the curvature is infinite, and hence the

force is infinite, and capable of suddenly destroying a finite velocity.

Similarly all along ABC a certain relation between velocity and

slope must hold, and this relation must be of such a nature that

each portion will have zero velocity as soon as the wave has passed

over it The mathematical relation which must connect the slope

and the velocity at each point when waves are propagated in one

direction only, is obtained from (1) substituting the value of v :

dy_!&y = +
dt dx

where the upper sign holds for waves propagated in the positive

direction.

I have discussed this question at length, because it shows clearly

the important fact that if waves are sent out from any disturbed region,

the displacements in that region are not by themselves sufficient to

determine the subsequent motion, the velocities being just as important

as the displacements. In the above case, with the same displacements,

the velocities might be chosen so as to give a wave wholly moving
forward in one direction, or wholly moving back in the opposite

direction, while generally there are two portions of the wave, one

moving towards the positive, and one towards the negative side.
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12. Transverse Waves in an Elastic Medium. We confine

our attention for the present to bodies, the elastic properties of which

are independent of direction. Such bodies are said to be “isotropic.”*

Consider a medium in which the displacements are the same in

magnitude and direction for all points lying in the same plane drawn

normally to a given line. In Fig. 14 OX represents this line, and

AiBi, A 3B3 ,
A 3B3 ... are the intersections of a number of planes

perpendicular to OX with the surface of the paper. At each point in

these planes the displacements are sup-

posed to be identical, but they may.

differ in different planes. If the dis-

placements are all normal to OX and

in the plane of the paper, each plane

may be imagined to slide along itself

through distances equal respectively to

CXi, C3C2

'

etc. We confine the in-

vestigation to the case of elastic forces

which are such that for the linear dis-

placements contemplated, the restitu-

tional force acts backwards in the direction of the displacement.

The strain set up in the medium by the displacement is one

involving change of shape only, but not any

change of volume.

Let PM and MP' be the positions in

the strained condition of two lines originally

parallel to OX

;

the parallelogram PQNM
was originally a rectangle, and the elementary

theory connecting strains and stresses shows

that the plane AJB2 can only be maintained

in its displaced position if it be acted on by an
upward force which per unit surface is equal

to n tan a, where n is the resistance to distor-

tion and a the angle between PM and OX. Similarly the plane A 3 B3

to keep its position must be acted on by a downward force which per

* Thomson and Tait, Vol. i., Art. 676, give the following definition of

isotropy

:

“The substance of a homogeneous solid is called isotropic when a spherical

portion of it, tested by any physical agency, exhibits no difference in quality

however it is turned. Or, which amounts to the same, a cubical portion cut from
any position in an isotropic body exhibits the same qualities relatively to each
pair of parallel faces. Or two equal and similar portions cut from any positions

in the body, not subject to the condition of parallelism, are undistinguishable from
one another. A substance which is not isotropic, but exhibits differences of

quality in different directions, is called eolotropic.”

Fig. 15.

Fig. 14.
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unit surface is n tan a, where a is the angle between P'M' and OX.
The constraint which maintains a small rectangular volume of unit

height, thickness NN' and length MN in equilibrium is

—MN x n (tan a — tan a).

When the constraint is removed the volume will begin to move under

th$ action of an elastic force equal and opposite to this.

If the displacements are denoted by yt
we havo

and if MM' = t,

tana =

,_dy

dy

dx’

tan a=^- + t4-(¥
dx dx \dx

t

d2

yso that the resultant elastic force may be written MN x t * n
,
but

d2
y /MN x t is the volume considered, and if p is the density, n
j
p will

denote the resultant force divided by the mass which is equal to the

acceleration. Therefore

;

d?y
__
n <Py

dt2 ~
p das

2
'

This equation is of the form (2) and shows that the medium is capable

of transmitting waves in a direction OX with a velocity Jnjp. As the

velocity is independent of the wave-length, waves of any shape are

propagated without change of type.

If we imagine a second disturbance superposed on the one which

has been discussed, and at right angles to it, we obtain a wave
propagation in which each particle describes a plane curve. We may
for convenience limit the discussion to waves of the normal type, in

which the displacements are therefore represented by

y-a cos (uit —px).

Superposing a similar wave, with displacements in the z direction

z = b cos (<ot -px + 8),

the paths of the particles in each plane are all similar and elliptic,

circular or rectilinear, according to the value of 8 and the relations

holding between a and b (Art. 6).

One important observation remains to be made. Imagine the

medium to consist of a number of detached particles, not acting on

each other, but each attracted to its position of equilibrium by a force

varying as the distance. Let the position and velocities of the

purtic]es at the time t = Q be represented by

y = acosjo#
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and
v = wa sinpx

;

then the particles will continue to move under the action of the central

forces so that their position at any subsequent time is represented by

y = a cos (wt-px),

for this is the only relation which satisfies the condition that the

accelerations are proportional to the displacements, and gives the

required values for the displacements and velocities when t — 0. Hence

a number of detached particles may simulate a wave motion, if once

their displacements and velocities are properly adjusted, and if the

force tending to bring them back to their position of rest causes an

acceleration proportional to the displacement.

13. Condensational Waves. We imagine the same conditions

to hold as in the previous paragraph, with the exception that the

displacement (£) shall be in the direction of propagation. An investi-

gation very similar to the one wThich was applied to the distortional

or transverse waves will now hold, and it is not necessary to deduce

again in detail the equation of motion, which for the case that

is small is found to be:

d 2
£ m d?£

dt2
p da?

'

Here m represents the longitudinal stress per unit elongation. It

would be wrong to substitute for m the resistance to dilatation, or,

as one might be tempted to do, Young’s Modulus. The magnitude of

m in terms of the elastic constants needs to be specially determined by
the fact that there are no displacements at right angles to the direction

of propagation. This we proceed to do. If the forces acting in the

medium were all in the direction OX, a contraction of the medium at

right angles to the direction of propagation would take place. The
application of Young’s Modulus would be justified in that case, but we
have worked under the assumption that the displacements (not the

forces) are parallel to OX. To counterbalance the contraction, trans-

verse forces must act, and these forces will affect the elongations. It

is known from the elementary theory that if P be the normal tensional

stress along XO, it will produce an elongation equal to

p(L + J_

^

V9k 3n)

where Jc is the resistance to compression, and n the resistance to

distortion.

The contraction at right angles is
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If equal tensions Q act along OF” and OZ at right angles to OX, the

elongations along 0Y and OZ are both equal to

$ (h +£}-

(

p (i - h) =
'9 (a

+ i)
~ p (i - h)

(6).

The elongation along OX is, taking account of Q,

P JL JL
3n

+
3k,

-2Q
A
Gn

Substituting the value of Q found by equating (6) to zero, the elongation

becomes
BP

3k + &n'

The stress per unit elongation is therefore

m = k + |».

The velocity of propagation is *Jm/p and depends therefore on the

resistance to distortion, as well as on the resistance to compression.

The waves which involve longitudinal displacements only, are

called condensational waves, because they involve changes of volume,

but all condensational waves involve also distortion. A difficulty may
be found in admitting the existence of waves having the type con-

sidered on account of the force Q which would have to be applied at

the boundary of the medium. The difficulty no doubt exists in some

cases and it would be wrong, for instance, to apply the result obtained,

to the propagation of waves along a rod or bar. Waves in which the

displacements are solely in the direction of propagation could not

travel along a rod, unless forces were applied at the surface and

adjusted so as to prevent all contraction or expansion at right angles

to the rod.

In an elastic medium, the boundaries of which are at a considerable

distance, plane waves do not occur except as the

limiting case of spherical waves, when the radius

of the sphere has become very large. There is

no difficulty in conceiving radial displacements and

stresses across planes of AB and A'B' (Fig. 16),

which prevent the lateral contraction. Our inves-

tigation may therefore be considered to apply to

such spherical waves having a large radius.

14. Spherical Waves. If a disturbance is produced within a

small volume of an isotropic elastic medium, it spreads out in the form

of spherical waves. Let at any one time, a very small volume T be

disturbed, the rest of the medium being in a state of equilibrium. If

all disturbing forces are now removed from the region T, the complete
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theory proves, what the results of the previous paragraphs already lead

us to expect, that v being the velocity of propagation, the disturbance

after a time t, will be confined to the neighbourhood of a spherical

surface drawn with uniformly increasing radius

r = vt about some point within T. If the medium
. can propagate both distortional and condensational

waves, the disturbance in general separates mto
two portions ; one of these is spread over a sphere

of radius r1 = v1 t, and consists of displacements

which do not involve any change of volume, while

the other, spread over the sphere of radius r2 = v2t,

involves both condensation and distortion. In terms of the elastic

constants, the velocities of propagation are the same as for plane

waves, so that

Vx = Vn/p
,

v2 = *J(k + ^n)jp (7).

Fig. 17.

In all fluid media, the resistance to change of shape is zero,

hence the distortional wave does not exist, and the condensational

wave is propagated with velocity Jk/p, where for rapid oscillations,

such as take place in sound waves, k is the adiabatic and not the

isothermal elasticity. If a medium is incompressible, k is infinitely

large, and the condensational wave is propagated with infinite

velocity.

If the disturbance is of the normal periodic type, waves spread

outward from the source, and, in consequence, energy is propagated

outwards. Unless there is a continuous accumulation of energy in

space, the energy passing in unit time through all closed surfaces

surrounding the centre of disturbance, must be the same. Apply this

to spheres of different radii drawn round the centre, when it will

be clear that as the total energy transmitted through each sphere is the

same, the energy per unit surface must be inversely proportional to the

square of the distance.

Remembering (Art. 3) that the energy of a particle performing

periodic oscillations is proportional to the square of the amplitude and
following the analogy of plane waves, we are tempted to write for the

displacements (y) in a spherical wave,

y
a v

= - cos 2 -tt

r (8),

where a is a constant which may be different for different directions,

but remains the same along the same radius. This is not, however,

the correct expression (Chapter xiii) though it is approximately

accurate, when r is large compared to A, and becomes more and* more

nearly true in proportion as A/2 ?jt is negligible.
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According to (8) the difference in phase between two points at

a distance r2 - rx from each other, along the same radius, would be

2?r (V2 - ri)/A., but this result is limited by the same restrictions as the

equation itself and need not be true unless rx is large compared with A.

Though the energy transmitted by a spherical wave must vary inversely

as the square of the distance from the souroe, the energy of motion

near the source is not necessarily all transmitted and hence the motion

near the source is not correctly represented by a simple equation like (8).

15. Waves spreading from a disturbed region of finite

size. If the original disturbance be spread over a space T of finite

dimensions, Fig. 18, we may by a simple geometrical construction find

the space which at any subsequent time t may be disturbed in con-

sequence of the wave motion spreading out from T. We assume that

no forces continue to act within T, that space being left to regain a
state of equilibrium under the action of its own elastic forces only.

Subdivide T into indefinitely small portions and consider each

small portion to be an independent centre

of disturbance, from which spherical waves

spread out as in the last paragraph. If A
and B are the two points in T which are

nearest and furthest, respectively, from P,
then at a time APjv the disturbance from

A has just reached P. Previous to that

time the point P was at rest. It will con-

tinue to be affected by waves coming from

some point in T until a time equal to BP(v.

Then the disturbance will have completely passed over it, and P will

again be in equilibrium, i.e. its velocity will remain zero, though its

position may be different from that which it occupied previous to the

passage of the wave. To obtain the region over which the disturbance is

spread at any time t
,
we may draw spheres with radius vt, round every

point of the boundary of T. These spheres will have one or two

bounding envelopes, which separate the space cut by the spheres,

from that which includes all points which are not cut by any sphere

of radius vt drawn round any point within T as centre. The envelope

or envelopes therefore form the boundary of the disturbed region.

In Figures 19, 20 and 21 the disturbed space is supposed to have a

rectangular Section, and the sections of those waves are drawn which

spread out from the edges of the disturbed region. In the first figure

the time t is taken to be small, so that there is only one envelope and

one boundary. In Fig. 20, t has increased sufficiently to show a space in

the centre of the originally disturbed region, in which equilibrium has

been restored. This space expands until as shown in Fig. 21 the
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disturbance is confined to a shell surrounding a considerable space in

which the disturbance has ceased
;
the boundaries of the disturbed

region approach the shape of spheres.
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16. The Principle of Superposition. It has been assumed

in the last article that the disturbance at P may be obtained by

superposing the disturbances reaching it separately from all wave

centres within T. This is called the principle of superposition, and

holds, as may easily be proved, when the elastic properties of the

medium are such that the stresses are linear functions of the displace-

ments, or of their differential coefficients with respect to the coordinate

axes.

In the special case discussed in Arts. 11 and 12, y being the

displacement, the stresses are proportional to d-yjdx2
,
and satisfy there-

fore the condition of linearity. This still holds if the investigation

is not limited to plane waves, as it was in these articles, for whatever

be the properties of the medium, the stresses are always functions of

the strains, and when the strains are small, their squares and products

may ultimately be neglected. The principle of superposition may
always therefore be taken to be an approximation which becomes

more and more nearly true, the smaller the motion.

17. Huygens’ Secondary Waves. Instead of following a

disturbance from its original source, it is often more convenient to

trace its subsequent propagation from its position and

character at a given time. Thus let a disturbance origi-

nally coming from a small space be spread at time t

over a thin spherical shell of which a portion AB is

shown in Fig. 22. We may consider this shell to be

the disturbed region and find the disturbance at time tx

from Art. 15 by drawing spheres with radius vfa — t)

round each point of the shell. We get in this way two

spherical envelopes H'K' and HK between which the

disturbance is necessarily confined.

This result seems to be in contradiction with that

obtained by another line of reasoning, for, going back to the original

cause of the disturbance, the latter should, at time tx ,
be confined to

a thin shell of which HK is the outer boundary, and except close

to HK there should be no disturbance.

This brings us to the important remark that the construction of

Art. 15 only gives us the space in which there may be a disturbance,

and not the .space in which there is one necessarily. When the

displacements and velocities of the originally disturbed regions are

independent of each other, each point of the space in question will in

general have a velocity and a displacement, and only in exceptional

Fig. 22.
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cases will these reduce to zero. But the displacements and velocities

in the shell AB (Fig. 22) are not independent of each other, for they

all originally came from the same source. Hence the waves which we
may imagine to spread out from different points of AB must have

some relation to each other as regards direction of displacement and

velocity. As both our methods of reasoning are correct, it follows

that the relation in the present instance must be such that there is

neutralization at all points except in a narrow space close to the outer

boundary HK.

If we imagine the velocities in AB to he reversed, the displace-

ments remaining the same, we should get a wave travelling inwards.

In that case, there should be neutralization of the secondary waves

over HK and the disturbances would now lie in a shell close up to

H'K. This shows that the question whether a wave travels in one

direction or another depends on the relation between velocities and
displacements. The same result has already been proved in Art. 11.

The propagation of waves not necessarily plane or spherical may
be treated in the same manner. So long as we know that the

disturbance originally comes from a small space, and is therefore

confined to a thin sheet, we may always obtain the disturbance at

time tx from that at time t by constructing the outer envelope of all

spheres having a radius v(#i-£) and their centres on the boundary

of the space to which the disturbance is confined at time t.

Huygens was the first to investigate the propagation of waves .by

means of secondary waves which he imagined to spread out from all

points of the original wave, but the question why the disturbance

should be confined to the outer envelope of the secondary spheres has

been a serious difficulty up to the time of Fresnel, and even now
the reason why, according to Huygens’ construction, a wave should

not be propagated backwards as well as forwards, is often a stumbling-

block.

18 . Refraction and Reflexion of waves. Imagine a plane

wave disturbance to be confined to a

narrow layer between two parallel planes

of which AB and A'B’ are the intersec-

tions with the plane of the paper. Let

this wave meet a surface HK which

forms the boundary of another medium
having similar properties to the first, but

differing in the rate at which the waves

travel through it.
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If in the second medium velocity of propagation were the same as

in the first, the waves at time tx would be spread over a space

between the parallel sheets, and it will now be shown that the wave
on entering the second medium remains a plane wave, but with changed

direction, so that LM, L'M' may repre-

sent the boundaries of the space to

which the wave has spread. To prove

this, let AB (Fig. 24) represent the

front of the sheet of disturbance which

is supposed to be at right angles to the

plane of the paper. After a time t the

wave has moved forward in the first

medium through a distance

BH- vxt.

In the meantime, we may imagine, according to the previous

articles, a secondary wave to have spread from A through a distance

v2t, where v2 is the velocity of propagation in the second medium.

Draw therefore a sphere ofradius AT= v2t. To trace another secondary

wave we choose a time, say nt, at which the wave occupies in the

first medium a position such that BM=nBH
;

its point of inter-

section with the line AAT will be N, such that AN = nAK. From
this point N, waves spread out, and at time t, i.e. an interval t (1 —n)
after the wave has reached N, this secondary wave will have a

radius v2t (1 — n). If all these secondary waves are drawn for values

of n between 0 and 1, they are found to have a common tangent

plane KST. This tangent plane gives the extreme limit of the

disturbance in the second medium at the time t and represents

therefore the wave-front at the time t. Draw KE normal to the wave
the first medium, AT normal to the wave in the second medium,

statelet &i and represent the angles between the wave and the

sur&eOof separation. Then an inspection of the figure gives

sin $i KE vx ^
sin 02

~ AT ~'v2
w

We call the wave in the second medium the refracted wave, and

equation (9) gives the law of refraction. • The “refractive index” of a

substance as commonly defined is therefore equal to the ratio of the

velocity of light in vacuo, to the velocity of light in the substance.

The reflexion of waves may he treated exactly in the same manner,

and the well-Tcnown law deduced, according to which incident and

reflected waves are equally inclined to the surface of separation.

19. Wave Front and Wave Surface. In a medium in which

waves of all periods are propagated with equal velocities, a wave-front

is best defined as a surface such that the disturbance over it came

s. 3
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originally from tlie same source, and started from that source at the

same time. This does not restrict us to any particular form or shape

of the wave. If the disturbance follows the law of normal oscillations

the wave-fronts are also surfaces of equal phase. This follows from

the fact that if we imagine ourselves to follow e.g. a condensation as it

leaves a source, and spreads outwards with the velocity at which^ the

wave is propagated, the locus of the condensation will, by the above

definition, be a wave-front ; it will also remain a locus of equal phase

and remain so, though the wave may be refracted and reflected. When
the medium transmits waves of different lengths with different

velocities, the above definition no longer applies, and there is then

strictly speaking no wave-front, though if we limit the discussion to

homogeneous waves we may still speak of surfaces of equal phase, to

which the term “wave-front” is sometimes conveniently though not

very accurately applied.

A wave-front may lie altogether in one medium, or partly in one

and partly in the other. Thus in Fig. 23 DCLM represents the

trace of a wave-front. We apply the term wave surface to the front

of a wave or to the surface of equal phase which completely surrounds

a small centre oi disturbance, but we confine the term to the case

where the disturbance has never passed out of the original medium.

A wave surface in a homogeneous medium like air, glass, or water,

is always a sphere, while the shape of a wave-front would depend on
the previous history of the wave, and might be plane, spherical or of

irregular shape. In all media whether crystalline or isotropic the

wave surface is characteristic of the medium, while the wave-front in

general is not.



CHAPTER III.

PRELIMINARY DISCUSSION OF THE NATURE OF LIGHT
AND ITS PROPAGATION.

20. The Nature of Light. For our present purpose we may
consider light to be a wave-motion in an incompressible medium filling

all space and permeating all bodies. We speak of the medium as the

“luminiferous aether.” The waves of light are distortional waves, the

displacements being in the wave-front. Waves of the simple periodic

form are propagated through the aether with a velocity independent of

the wave-length. Hence any plane wave may be propagated without

change of type.

A wave in which the displacements at every point are simply

periodic, is called a homogeneous wave. If e.g. the displacement in

a plane wave travelling in the direction of x is represented by

y = acos2ir^-|) (1),

without limitation as to the distance x, we should have a homogeneous
vibration of wave-length A, period r, and frequency 1/r. But we
have no practical experience of a homogeneous wave of light. If

it existed, i.e. if equation (1) were strictly true, the oscillation of

any point would know no limit as regards time, either in the positive

or negative direction. A particle cannot send out homogeneous

radiations unless it has been vibrating for an infinite time
,
and the

mere fact that we are lighting a flame, and extinguishing it, shows

that the flame does not send out homogeneous radiations. Students

should clearly realize that this is a consequence of our definition of

homogeneous light. We cannot alter that definition without intro-

ducing a vagueness into our ideas, which has been the cause of much
error and confusion.

Our perception of light depends on a physiological sensation, but

the waves which are capable of producing this sensation are restricted

to a definite range of frequency. There are radiations which have all

the properties of luminous radiations, but which we cannot perceive by

means of our eyes because their wave-length lies outside that range.

3—2
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When we speak of the “ spectrum ” we include the whole range of

radiation emitted by a radiating body, and we distinguish between the

visible portion of the spectrum, which extends from the red to the

violet, and the invisible portion which includes the wave-lengths which

are too long to produce a visible sensation (infrared radiations) and

those which are too short to produce a visible effect (ultraviolet radia-

tions). A heated body emits radiations consisting of transverse waves,

which when the temperature is low, belong entirely to the infrared

portion of the spectrum. As the temperature increases, shorter waves

are added to the radiation and increase in intensity both absolutely

and relatively to the rays previously emitted. Ultimately the waves

belonging to -the visible portion of the spectrum begin to be included,

when the body becomes red hot. A still further increase of temperature

adds other visible and ultimately the ultraviolet radiations.

Table I. gives approximate values of the length of different waves.

Table I.

Extreme Infrared radiation observed by Rubens and

Aschkinass

Extreme Infrared in Solar Spectrum (Langley)

Longest waves photographed by Abney

Extreme Red of Visible portion

,, Violet ,, ,,
... ...

„ Ultraviolet transmitted through air

Extreme Ultraviolet observed in vacuo* ...

cms.

0061

00053

00020

000077

000039

000018

•000010

The electrical vibrations emitted by an electric spark are of

the same nature as luminous radiations, but the shortest electrical

wave we have been able to produce is four millimetres longt, i.e. about

one hundred times longer than the longest observed infrared wave.

Though the homogeneous wave represented by (1) is a mathematical

abstraction, the radiations of some gases, rendered luminous by electric

discharges under reduced pressure, may for many purposes be considered

homogeneous. Certain facts, however, which will be discussed in

Art. 31, show that the homogeneity is far from being complete, and

to prevent misunderstanding we shall call radiations of this kind :

“quasi-homogeneous.” If it be required to obtain a mathematical

expression for quasi-homogeneous waves we may write (1) in the

form

yi = cos {2irAi ( Vt - x) + aj} (la),

and form a number of similar equations varying slightly the values

of Oi and The disturbance may then be expressed as the sum of

* Millikan, Astrophysical Journal, lii. p. 47 (1920).

f Lampa, Wien. Ber. CV, p. 1048 (1896).
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the displacements given by the equations Separately. The phase

angle a may differ in successive equations by any value we please

without affecting the question of homogeneity. If the variations of Ax

cease to be small and wave-lengths are included which cover the whole

range of observable radiations, we obtain white light. To secure

continuity of the spectrum the values of the component wave-lengths

A1} Aj, etc. must be taken to be so near to each other that no spectro-

scope which can be constructed is able to resolve them.

We shall frequently use the above representation of quasi-homo-

geneous and of white light, but it is important to realise already at

this stage that it is hot the only one. Were light to consist of a

succession of disturbances similar to the one represented in Fig. 10 we
should still be able to represent it by means of homogeneous waves,

with the help of Fourier’s theorem (Art. 10). If the separate

disturbances succeed each other irregularly we should get white light

;

the distribution of intensity over the different wave-lengths would

depend on the shape of the disturbance, and would be the same for a

single disturbance as for the whole series jointly. If therefore we
chose the shape to be such as to give us the distribution we wish to

represent, the present method of expressing white light is in every way
identical with the previous one. In many cases the exact distribution

of intensity does not matter and we may assume the whole duration

of the disturbance to be indefinitely short : it then becomes an
“ impulse.” The consideration of white light as a succession of impulses

is very instructive and often simplifies calculations considerably, as we
need only deal with a single impulse; while if we start from the

homogeneous vibration we have to perform the summation for all

wave-lengths before we can arrive at a final result. It must be noted

that we are at present not concerned with the question how the light

originates : we take the disturbance as it is and try to represent it

analytically, and just as there are many ways of resolving a system of

forces, so are there many ways of resolving the motion of light into

elements with which we can deal analytically. The resolution by

homogeneous waves is one, the resolution by impulses another.

Whenever the two methods seem to yield different results, a mistake

has been made in their application.

We have spokeq ofthe “ distribution of intensity ” along the spectrum

and a few words are necessary to explain what is meant by that term.

We cannot assign intensity to an isolated wave-length but only to

a collection of wave-lengths covering a finite range. Thus if SA

represents a small range of Avave-lengths we may say that the intensity

of the light within that range is ASA. A is a function of the wave-

length and characterises the distribution of light through the spectrum.

In theoretical investigations it is often convenient to consider a range
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of frequencies instead of a range of wave-lengths, and in that case

writing A = V]k we have

/(A)SA = Fk-2/(F/k)8k.

The function defining the distribution of intensities is now V<f> («), where

^,(k) = k- 2/(F/k).

Students should note that the form of the intensity curve depends

on the independent variable which is chosen. They will then recognize

that statements, which are often met with, such as that the maximum
intensity of solar radiation is in the infrared or that the maximum
luminous effect is in the yellow have no meaning unless it is specified

whether you compare equal ranges of wave-lengths or equal ranges

of frequencies. These statements are often based on observations in

which a spectrum formed by a prism is used. But the dispersion oi

the prism compresses the red end as compared with the blue, and
if a thermopile were moved along the spectrum we should compare

together ranges for which neither 8A nor 8k but approximately 8k2
is

constant. When measurements on the intensity of light have to be

made with prisms, the numbers should be reduced so as to give the

distribution on some definite scale, and it should always be clearly

stated whether the scale is one of equal wave-lengths or equal

frequencies.

21. Velocity of Light. The experimental methods by means

of which the velocity of light may be measured are described in

elementary books. It will suffice here to record some of the results

obtained. A good summary of the numbers found by different observers

has been given by Michelson*, who combining his own figures derived

from Foucault’s method of the rotating mirror, with Newcomb’s result,

and Cornu’s value obtained with Fizeau’s toothed wheel, gives as the

most probable number for the velocity of propagation in vacuo

299,890 + 60 km./sec.

The experiments of Newcomb which probably form the most trust-

worthy single set of measurements gave

299,810 ± 60 km./sec.

If we weight the three sets of experiments according to their probable

error we find in centimetres per second 2 '99859 x 1010
.

For many purposes it is sufficient to take the number 3 x 1010
for

the velocity of light which throughout this book is denoted by F.

Michelson describes a combination of the two methods by means

of which the accuracy might, in his opinion, be increased considerably.

Should this be experimentally possible it will be necessary to take

account of the fact that it is the group velocity in air and not the

wave-velocity which is measured (see Art. 183).

* Phil. Mag. hi. p. 330 (1902).
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22. Intensity, illumination and energy of radiation. The
“ intensity ” of radiation at a point in a pencil of rays is the energy

conveyed per unit time and per unit surface through a small surface

placed at right angles to the pencil. The measure of the energy is the

heat generated when the whole radiation is absorbed.

The “ illumination ” at a point of a surface is the energy conveyed

through the surface per unit time, and per unit surface.

There is a distinction between “intensity” and “illumination,”

because in the definition of the former the surface which receives the

radiation is placed at right angles to the direction of propagation,

while the term “illumination” can be applied to a surface placed

obliquely. When dealing with a number of pencils which are inclined

to each other we may still speak of the illumination at a surface which

receives the pencil, but we cannot speak of the intensity of the combined

pencils.

Intensity should always be measured in mechanical units, and

includes all radiations visible or not, but when we speak of “ illumina-

tion ” we generally use the term in its literal sense confining it to that

part of the radiation which produces a luminous effect in our eyes

:

arbitrary units are then more convenient in practice. It is occasionally

convenient to apply the word “illumination” to radiation generally

which includes both the infrared and the ultraviolet region
;
we should

not hesitate to do so when this saves circumlocution or the introduction

of another expression.

The “energy of radiation” in a volume is the excess of the energy

which has entered the volume over that which has left it. It is not

possible in general to measure the energy in a volume because the

introduction of the measuring appliance would disturb the flow of

energy, but in simple cases we may indirectly obtain a useful expression.

Let a stream of radiant energy fall perpendicularly on one of the sides

of a rectangular volume, having surface s and length l. Before the

flow is constant—when as much energy leaves the volume as enters it

—

energy enters the first surface, and if, the disturbance had not yet

reached the opposite face an accumulation takes place within the

volume. If E be the intensity of radiation, the excess of energy which

enters the surface per unit time is Es, and as it takes a time lj V to cover

the length of the volume the total accumulation of energy is Eslj V or

Erl V if r be the volume. Hence the energy per unit volume is the

intensity of radiation divided by the velocity of light. If a number
of independent but constant streams of radiant energy traverse a

volume we may similarly prove that the energy per unit volume at any

point is equal to the total illumination over the complete surface of the

volume divided by the velocity of light.
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23. Optical length and optical distance. Two distances are

said to be optically equivalent when light takes the same time to pass

through them. The optical length of a path is defined to be the length

of its equivalent in vacuo. If the path traverses several media, the

total optical length is the sum of the optical lengths of all the different

parts. Thus if v-2 ,
vs ,

etc. are the velocities of light and Sj, s2 ,
s3 ,

etc.

the lengths of the paths in the various media, then the optical length is

y(* +
s*
+ ?* + ,

\Vi v2 v3 /

But by Art. 18, if fa, fa, fa are the refractive indices,

fa = Vjvl ; fa= V/v2 ; fa= V/v3 ;

and hence the optical length of the path is

faSi + fas3 + fass + (2).

The optical distance between two points is defined to be the

shortest optical length of any curved, straight, or broken path that

can be drawn between them. If both points lie in the same medium,

the shortest path is clearly the straight line which joins them, and the

optical distance is the length of this line multiplied by the refractive

index of the substance.

A “ray” is defined to be a path of shortest optical length. In

a medium possessing uniform optical properties, a ray passing through

two given points, must, by this definition, always be the straight line

which joins them. The path of a ray between two points which are

situated in different media may be determined as follows :

Let A and B, Fig. 25, be the two points, and S some point on the

surface of separation, which lies in the plane

drawn through A and B, perpendicular to the

surface. Draw AC perpendicular to AS, and

BE perpendicular to SB. From any point T
in the plane ASB draw TC parallel to AS,
and TE parallel to SB, and construct perpen-

diculars SII and KT from S and T, on CT and

SB respectively. Let the position of S be such

that the optical length IIT is equal to the optical length SK, then the

optical length of CT+ TE is equal to that of AS + SB. But from

inspection of the figure, AT>CT, BT>TE, hence the optical length

of the path AT+ TB must be greater than that of the path CT+ TE
which is equal to that of AS + SB. Students should convince them-

selves that the same result follows when the point T is taken to lie on

the other side of S. It follows that the optical length AS+SB is

smaller than that of any other path joining A and A in the plane of

the paper. The condition on which this result depends is that the

Fig. 25.
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optical length of HT is equal to that of SK or that if fily i>-2 are the

two refractive indices,

P\HT= [x2SK
If &i and 0t are the angles which AS and SR form with the normal

to the surface, the condition reduces to

Pi sin 0i = /Jt2 sin 02 ,

which is the well-known law of refraction. The rays as defined by us

are therefore identical with the rays of geometrical optics.

It has been assumed in the above proof, that the path of shortest

optical distance lies in the plane which is at right angles to the

surface separating the two media. The restriction may be removed

by giving to $ a small displacement to either side at right angles to

that plane, and showing that the optical distances AS and SR are

both increased.

A ray may be drawn between any two points of an optical system,

but only a single set of rays belong to one set of wave-fronts. Let HK
and H'K' (Fig. 26) represent two wave-fronts of the same

disturbance. From a point A on UK, a line may be

drawn tracing the shortest optical length between A and

any given point G on H'K'. By altering the position of

0, its optical distance from A changes, and some point may
be found on H'K' for which that optical distance is least.

Let £ be that point. The path of shortest optical length

between A and £ is one ray of the system which belongs

to the two wave-fronts. We may similarly trace a ray

satisfying the same conditions from every point P on HK
to a corresponding point Q on H'K', and thus obtain the system of

rays belonging to a given system of wave-fronts.

If the medium is homogeneous, the rays must be straight lines.

In a number of separate media, each being homogeneous, the system

of rays is made up of a system' of straight lines, which will in general

change in direction when passing from one medium to another.

If the medium is isotropic, so that one wave-front may be obtained

from another by Huygens’ construction, as explained in

Art. 17, the system of rays intersects the system of wave-

fronts at right angles. This is proved by considering two

points, A lt A 2 ,
on a wave-front HK. Every other wave-

*firont H'K' will be a tangent surface to two spheres,

drawn with the same radius round A x and A 2 as centres,

so that if Pi, P2 ,
are the two points of contact, A y£i

and ,A 2£2 must be at right angles to H'K This being

so, A 2£i is necessarily longer than A x£x ,
provided that

Aa is sufficiently near to A x . Hence all points on HK which are near

Fig. 27.
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A x are further from By than A y ,
and therefore the sphere which is

drawn through A y round By as centre, cannot intersect, but must touch

the surface HK. A yBy stands therefore at right angles both to HK
and to H'K'.

If the medium is isotropic, hut not homogeneous, as e.g. the air

surrounding the earth, which varies in density and temperature, the

course of a ray may be curved, but the above proof still holds if we
take UK, H'K' to lie near each other, and hence the rays are in this

case also at right angles to the wave-fronts.

It also folloAvs from Huygens’ construction that the optical length

from one wave-front to another is the same when measured along

different rays. We shall call this length the optical distance between

the two wave-fronts.

To illustrate the use which may be made of these propositions, we
may deduce the well-known formula connecting the position of a small

object with that of its image formed by a lens.

If waves spread out from a point source at P, the wave-fronts are

spheres with the point as centre. If these wave-fronts, after passing

through the lens, are spheres with Q as

„ ,
centre, the wave-fronts will gradually

/ V contract until the energy of the waves

v
J Mcjlv (“ft is concentrated at Q. (This is not quite

'K. W a' correct, owing to the fact that the wave-

28
fronts after emergence are not complete

lg'
' spheres, but this does not affect the

argument.) The optical length from P to any point on HK is the

same, and also the optical length from any point on H'K' to Q.

It has been proved above that the optical distance from HK to H'K
is the same when measured along any ray, hence the optical distance

from an object to its image is the same along all rays. PSQ and

PMNQ are clearly lines satisfying all conditions laid down for the

rays belonging to the system. If g. is the refractive index of the

lens, the equality of optical lengths leads to the equation

PS + JSQ =PM+pMN + NQ =PQ + {fj.-\) AIK,

or (PS - PC) + (SQ -QC)=(p-l) AIK.

Also PS2 -PC2 - SG\

. pc; pc SG* SC*

.. ro in,- p$ + 1>G
-
2PC >

if the angle SPC is so small that its square may be neglected.

Similarly SQ-QC=^-n ,

PS-PC =

PG +
CQ

2CQ’

2(fx-l)MK
SC 2
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IfMN and SC are expressed in terms of the radii of curvature of

the surfaces of the lens, we obtain the well-known relation between the

position of object and image.

24. Fermat’s Principle and its application. Fermat (1608

to 1668) enunciated the principle that Nature could not be wasteful,

and was bound for this reason to cause the rays of light to travel

between two points in the shortest time possible. We may accept

Fermat’s conclusions but cannot attach any weight to his reasoning,

more especially as the mathematical conditions which are made use of

in the application of his principle would hold equally if the optical

distance between two points were a maximum instead of a minimum

:

it is indeed sufficient to define the ray as the line satisfying the con-

dition that the optical length between two points is stationary.

“Fermat's Principle,” as it is called, often furnishes a powerful

method of dealing quickly with otherwise complicated problems, and

may serve as a connecting link between the waves of the undulatory

theory and the rays of Geometrical Optics. The importance of the

property of stationary optical length lies in the fact that it enables us

often to determine the optical distances with sufficient accuracy when

the course of the ray is only approximately known. That the optical

length is the same when measured along a ray or a line infinitely near

the ray, follows directly from the maximum-minimum property.

HK
,
H'K being wave-fronts, let APB be a ray belonging to the

system. Let AQB be a line lying everywhere

near APB so that their distance apart ST at

any point S may be expressed in terms of the

position of S, and the separation PQ at some

definite point Q. Writing PQ = a, the difference

in the optical length of AQB and APB must

then be expressible in terms of a, and if a is small, must be capable

of expansion in a series proceeding by powers of a as e.g.

h\0. + fop? + fop? +

As the condition of stationary optical path requires that for numeri-

cally equal positive and negative small values of a the optical length

shall be the same and place fo must be zero. If the coefficients of the

higher powers of a also vanish, B will be the image of A, and if for

each point of HK we can find a point on H'K' fulfilling the same

conditions, the surface H'K' is called “aplanatic” with respect to HK.

It is important to notice that the stationary, property also .holds

for two paths AB and AC, if B and C are points near each other and

on the same wave-front.
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For tins purpose it is only necessary to consider that if the

difference between the optical lengths of AB and AC depended on the

first power of BC

\

the reversal of the direction of BO would change the

sign of the difference. Hence a position of C could be found for which

the optical length A C is shorter than that of the ray AB

;

but this

would not be compatible with the construction of the wave-front H'K'
from the wave-front II

K

according to Huyghens’ principle (Art. 23).

The application of Fermat’s principle may be illustrated by an

example.
,

Let a parallel beam (i.e. a beam in which the rays are parallel and

Fig. 30.

therefore the wave-fronts planes which

cut the rays at right angles) fall on a

prism and be refracted through it. Let

HK and LM (Fig. 30) be two wave-

fronts, then fi being the refractive

index, the equality of optical lengths

gives

HR + pBS + SL =KV + ftVT+ TM.

Suppoce a wave of slightly different wave-length and refractive index

ft! falls on the prism, the incident beam being coincident with that just

considered. We may take HK to be also one of the fronts of the

second set of waves, but on emergence, the wave-fronts of the wave
defined by /I will not be parallel to those defined by /a. We select that

front which passes through L. Let its inclination be such that it

intersects the ray TM in N. If /I and /* only differ by a small

quantity, we may measure the optical length of any of the rays /a' not

along its own path, which we do not know, but along the path traced

out by one of the rays /a which lies near it, the error committed

depending only on the second power of /a' -/a. We may therefore

obtain a second equation for the equality of optical lengths, which is

HR + fi’RS+SL =KV+n'VT+TH;
taking the difference between the two equations,

(/ - ft) RS= (/ - /a) VT- MIT,

or (/a' - /a)
( VT- RS) =MN.

The angle 6 formed between the emergent rays of the two beams i3

equal to the angle NLM, or if small, equal to its tangent NMjML.
It follows that

0 VT-RS ^
(/-/a)

- ML
This is a useful expression, first obtained by Lord Rayleigh, connecting

the dispersion of a prism with the width of the emergent beam, and

.
the lengths of the paths traversed in the prism by the extreme rays of

the beam.
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25. The Principle of Reversibility. There is an important

proposition affirming that if at any time all velocities in a dynamical

system are reversed and there is no dissipation of energy, the whole

previous motion is reversed. Any configuration of the system which

existed at a time t before the reversal took place will therefore again

exist at the time t after reversal.

As an example of this principle, I give an investigation originally

due to Stokes, which yields important relations between the ampli-

tudes of incident, reflected and refracted light. Let a
71 ray of homogeneous light AO (Fig. 31), of unit amplitude,

_ fall on a reflecting surface. Let r be the amplitude of the

reflected ray OR, and t that of the transmitted ray OT.

If at any moment the courses of the reflected and refracted

Fig. 31. rays are reversed, the two reversed rays coming together at

the surface should combine to reproduce the ray of unit

amplitude passing along OA and nothing else. That is to say, the

ray OT' due to the reflexion of TO must be neutralized by the ray due

to the refraction of RO. We shall begin by assuming that there is no

change of phase at reflexion or refraction, except possibly one of 180°

which will appear as a reversal of the sign of the amplitude. If r

measures the amplitude after reflexion at 0 of a ray of unit amplitude

travelling along TO, the ray which originally travelled along A 0 with

unit amplitude, and after refraction took an amplitude t, will, after

reversal and reflexion at 0, have an amplitude tr'. Similarly the ray

OR reversed and refracted takes an amplitude rt. Hence one of the

conclusions we may draw from the principle of reversion is that

rt + r’t = 0

or r + r — 0 (4).

This equation must be interpreted to mean that there is a reversal of

phase either at internal or external reflexion, r being equal in magni-

tude to r, but of opposite sign.

The ray OR of amplitude r, has after reversal and renewed reflexion

at 0, an amplitude r2
,
the ray OT of amplitude t has, after reversal and

refraction at 0, an amplitude tt', if t' is the ratio in amplitude of the

incident and refracted ray when the ray passes through the surface in

the reverse direction. If the two rays make up the original one of unit

amplitude, ilf follows that

r2 + tt' = 1 (5).

The equations are not sufficient to determine t
t
and t' in terms of r, but

they establish an important relation.

We may now generalize our results so as to include the possibility

of a change of phase.
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Let the oscillation in the incident ray at the point of contact with

the reflecting surface be given by the projection on a fixed line of

the revolution of a point I (Fig. 32) in a circle, the revolution being

counter-clockwise. Let similarly the motion at the same point of the

reflected and refracted waves be represented by the projection of the

circular motion of R and T. The system of

points /, R, T revolving with the same angular

velocity represents at any time, the phases at the

point of incidence of the incident, reflected and

refracted rays. At some instant let the rays be

reversed ;
the effect on our diagram will be that

the points T and R now revolve clockwise, but

their position at the time of reversal is un-

changed. The reflected ray reversed will give a

reflected ray represented by OR1 where Rx must

lie on 01, because obviously the reflexion in the reverse direction must

produce a change of phase which is identical in magnitude with the

change of phase in the forward direction. The refracted ray OT gives

rise, on reversal, to a refracted ray, which again must be capable of

representation as a projection of the circular motion of some point

Tx and this point must also lie on 01 because the principle of rever-

sion shows that ORt and OT\ must have the resultant 01.

"With the same notation as before, we find that the equation

t* + tt' = 1

is independent of any assumption as to change of phase at reflexion.

The reflected wave OR gives rise after its reversal to a refracted

wave which as regards phase and amplitude, may be represented by

OS where OS= tr, while the refracted wave OT gives rise to a reflected

wave represented by the vector OS1 = tr\ which must neutralize OS.

This as regards magnitude leads to the equation

r = r.

Now the angle ROS must be equal to IOT, and

TOS= TOI + IOS
= TOI+ ROS— ROI
= 2TOI- ROI.

If the change of phase {IOT) at transmission be denoted»by t, and the

change of phase at reflexion (IOR

)

by p, then the change of phase p

at the internal reflexion is TOSu measured clockwise, which is the

direction of the reversed motion
;
this is equal to a- + TOS.

Hence p' — tt + 2r — p

p + p' = 7T + 2Tor
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gives the complete lav, which for t = 0 reduces to p + p = ir as previously

established. The change of phase at transmission is by the same

reasoning shown to be the same in whichever direction the refraction

takes place. This completes the information we can get out of the

principle of reversibility in dealing with this problem.

26. Polarization. Equation (1) represents a disturbance in

which the displacement is everywhere in the same direction. A ray

of light satisfying this condition is said to be plane polarized. If the

path of the displaced point is circular or elliptical we say that the

light is circularly or elliptieally polarized. It is observed that when
a ray of light AR (Fig. 33) is reflected from

a glass surface HK
,
at a particular angle, and

the reflected ray RS is incident on a second

mirror LM, which is capable of rotation round

RS, the intensity of the reflected ray SB
depends on the position of the second mirror.

If LM be parallel to IIK, the intensity of the

reflected ray is a maximum, and if the mirror

be turned through a right angle, so that the
plane of incidence, instead of being in the plane of the paper, is at

right angles to it, the intensity of the reflected light is zero. Such
a result has no analogy in sound and could not be explained if light

were due to longitudinal waves. In the case of transverse disturbances,

we may draw a distinction between the vibrations which lie in the

plane of incidence and those at right angles to it, and thus explain the

•want of symmetry. If we imagine that at a particular incidence, those

rays only are reflected in which the vibration is at right angles to the

plane of incidence, the ray RS will consist of vibrations at right angles

to this plane and will be reflected in the same proportion by LM, if

the two mirrors are parallel. But if LM be turned through a right

angle, the vibration along RS will now be in the plane of incidence

of the second mirror, and hence by hypothesis, no light is reflected.

Light which has been polarized by reflexion, is said to be polarized in

the plane of incidence.

All homogeneous rays are polarized. To prove this, we imagine the

wave to proceed in the direction of the axis of w.

Let the displacement have one component along 0Y%

and one along OZ,
y = a cos cot,

z = h cos to (t - O').

According to Art. 6 the motion is rectilinear when 0 = 0, circular when
a = b and 0 = + w/2, and elliptical in all other cases. Homogeneous
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light may therefore be plane, circularly, or elliptically polarized, but it

will always be polarized.

We have certain experimental methods of detecting polarization.

When these methods are applied to light emitted from a flame or from

a body rendered incandescent by the electric discharge, it is found that

no polarization can be detected, even when the lines of the spectra of

gases are examined. This alone is sufficient to show, as has already

been pointed out, that we do not meet with homogeneous light in

nature.

If the path of a point over which a homogeneous wave passes be

circular or elliptical we say the light is circularly or elliptically polarized.

The definition of plane polarization can be applied to white light, if the

disturbance is everywhere in the same direction, but the definition of

circular and elliptic polarization as given above only applies to the

ideal case of homogeneous light. With quasi-homogeneous light the

path may be described as an ellipse gradually changing in dimension

but preserving the same ratio of semi-axes and also the same direction

of these axes. The changes of amplitude must be considered as slow

compared with the time of one revolution, but rapid compared with

the time in which we can carry out an observation, so that our

instruments only perceive a general average effect. We say that

white light shows circular or elliptical polarization when its quasi-

homogeneous constituents have these properties.

27. Light reflected from transparent substances. It will

be useful to follow out a little more closely at this stage the effects

of reflexion from a transparent polished surface. According to the

preceding article, ordinary light reflected by such a surface at a

particular angle, called the angle of polarization, is plane polarized

and by definition, polarized in the plane of incidence. Anticipating

the results of later Chapters we specify at once, that the direction of

vibration is at right angles to what has been called the plane of

polarization.

The amplitude of the reflected light must, according to what has

been said, depend (1) on the direction of polarization of the incident

light, and (2) on the angle of incidence. A mathematical expression

for the reflected amplitudes in different cases was first obtained by

Fresnel, whose results we introduce here, deferring their theoretical

demonstration to a later stage. If a homogeneous vibration of unit

amplitude vibrating normally to the plane of incidence falls on a

reflecting transparent substance, the angle of incidence and refraction

being 9 and 9y respectively, the amplitude of the reflected ray is:

_ sin {By — 9)
Tn ~

sin (6l + 9)
(6).
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If the light vibrates parallel to the plane of incidence the reflected

vibration has an amplitude:

Jn these equations 61 denotes the angle of refraction so that if /x is the

refractive index, sin 9 - /* sin 9X . For the present we take these equations

to represent experimental facts and apply them to particular cases.

The sign of the amplitude is left undetermined for the present because

we can only observe intensities which depend on the square of the

amplitude. An experimental method to decide between the alternatives

is given in Art. 44.

The square of rn increases with increasing incidence from 9 = 0

(normal incidence) to 9 = 7r/2 (grazing incidence). When 9 is sufficiently

small, we may put sin 9 = 9, 9 = p9x ,
and obtain

1 - /*

1 + (X
.(8 ).

This holds for normal incidence and gives us the intensity of the

reflected light at that incidence :

. ^
Thus for glass with refractive index 1‘5, one twenty-fifth or 4% is

reflected at normal incidence, and hence 96% is transmitted. When
the incident ray is as oblique as possible, the light is entirely reflected,

none being transmitted. The negative sign of rn when /x is greater

than one indicates a change of phase of 180°. The expression for the

amplitude of the light polarized at right angles to the plane of incidence

diminishes from Tp = ^ + /u
) >

for normal incidence, to 0, when 9 + 91 = tt/2. In that case sin 9X = cos 9,

and the equation of refraction sin 6 = p sin 9X becomes tan 9 = /x. If the

angle of incidence further increases, the amplitude increases again and

for grazing incidence the light is in this case also totally reflected.

Equations (6) and (7) preserve their numerical value, but reverse

their sign when 9 and 9X are interchanged. This shows that on

reversal of the ray the same fraction of light is reflected, but that if

in one case there is no change of phase, a change of 180° takes place

in the other case. This agrees with the result independently deduced

m Art. 25.
*

*If the incident light has an amplitude a and is polarized in a plane

inclined at an angle a to the plane of incidence, we may decompose the

oscillations into two, one a cos a being polarized in the plane of incidence

and the other a sin a polarized at right angles to that plane. The re-

flected rays of each component may then be united again. If b be the

4s
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amplitude of the reflected ray, and /3 the angle its plane of polarization

forms with the plane of incidence, we have

sin (6j_ — 0)
b cos /3 = a cos a

Hence

b sin j3 = a sin a

tan [i = tan a

sin (0! + 9) ’

tan (0x — 0)

tan (0! + 0)
*

cos (0i + 0)

cos (0i - 0)
’

and b2 ==--a>
|
COS2 a

sin2
(0X

— 0)
+ Sill a

tan2
(0i - 0)

sin2 (0j + 9)
a“± “

tan2
(02 + 0)J

The first of these equations shows that for 0 + 0X = ir/2, the reflected

ray is polarized entirely in the plane of incidence. The resulting value

of 0 obtained from tan 0 = /x, gives us therefore the angle of polarization.

When ordinary light falls on a reflecting surface, we may obtain

the intensity of the reflected light by considering that the homogeneous

waves of closely adjoining wave-lengths have their planes of polarization

distributed quite irregularly; cos2 a and sin
2 a in the above equation

must therefore be replaced by their average value, which is one half.

The intensity of the reflected light is therefore

fr>_i 72
sin

2
(01 -0) / cos

2
(0i + 0)\

2
sin

2
(0! + 0) \ cos2

(0i - 0)/
*

The total intensity is given by this expression, but the intensity is

distributed unsymmetrically in different directions. That part of the

light which is polarized at right angles to the plane of incidence has

an intensity

j a
tan2

(0j - 0)

tan 2
(0i + 0)’

while for the light polarized in the plane of incidence, the intensity is

1 o Sin
2
(01 -0)

2
sin

2
(0i + 0)

'

The difference between these two quantities gives us the amount of

polarized light, which, together with the unpolarized light of intensity

equal to twice that of the smaller, makes up the partially polarized

beam of the reflected light.

The intensities of the transmitted beams are obtained by the

principle of the conservation of energy, and if Ia ,
Ir ,

ft represent the

intensities of the incident, reflected, and transmitted beams respectively,

la = Ir It'

It would be wrong to conclude from this that if aa , ctt measure the

amplitudes of the incident, reflected, and transmitted rays, aa
l = a? + a/,
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because the squares of amplitudes only express the relation.in|£njraes

if the waves have the same wave-length, and are transmitt^^l^pugh .

media possessing the same inertia. It is, however, in every^^ ^
intensity that concerns us, and the equations given above give tneTg-

fore everything that is required.

So far as can he judged by experiment, Fresnel’s equations (6) and

(7) represent the observed facts with considerable accuracy. An
important exception is that in which the angle of incidence lies near

the angle of polarization. If the incident light be polarized at right

angles to the plane of incidence, and falls on the surface at the angle

of polarization, no light should according to equation (7) he reflected

at all, and there should he a complete reversal of phase in the reflected

light, as the angle of incidence changes from a value slightly smaller

than the angle of polarization to a value slightly greater. Sir George

Airy discovered that this is not quite correct for highly refracting

substances like diamond, and Jamin, pursuing the subject further,

found that there is always a residue of light reflected at the polarizing

angle though the incident Jight may be strictly polarized at right

angles to the plane of incidence. The phase, which should change

suddenly through 180°, changes rapidly but not discontinuously, so

that at the polarizing angle there is a retardation or acceleration of

phase amounting to 90°.

Since then, Lord Rayleigh* has shown that Jamin’s results are in

great part, though not entirely, due to surface films of probably greasy

matter which may be removed by polishing.

If light falls on the surface of a plate of glass at the polarizing

angle, the ray entering the glass falls on the second surface again at

the polarizing angle, as the condition 6 + 01 = ttJ2 will, in a plate

bounded by parallel surfaces, be fulfilled at both incidences. It follows

that the light, reflected at the second surface, increases the intensity

without detracting from the polarization of the reflected beam. The
same argument may be used to show that a pile of parallel plates gives

at the proper angle a polarized reflected beam which, neglecting

absorption, might be made to equal the intensity of that component of

the incident beam which is polarized in the plane of incidence. Such

a pile furnishes a simple and cheap method of obtaining polarized light.

There is some disadvantage, however, in the fact that the direction of

the rays is changed by reflexion. For this reason, the transmitted

beam is occasionally used. The transmitted beam is only partially

polarized by a single refraction, but it is clear that when the number
of plates is sufficiently great to reflect all the light polarized in the

* Collected W$rks, Vol. ii. p. 522.

4—2
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plane of incidence, the refracted beam can only contain light

polarized at right angles to that plane. A large number of plates

is however required, if the polarization is to be approximately complete.

The amount of light transmitted through a pile of plates, or reflected

from it, has been calculated by Provostaye and Desains*.

If p be the fraction of the intensity reflected at one surface, that

reflected from a number n of parallel surfaces is

np

i + 0-i)p*

If there are m plates, there are 2m surfaces, hence in terms of m the

intensity of the reflected light is

2mp
1 + (2m - 1)p

and the intensity of the transmitted light is

1 -p
1 + (2m - 1)p*

For glass of refractive index 1*54, p at the polarizing angle is *16,

and from this we may calculate that it requires 24 plates to furnish

a transmitted beam which shall contain not more than 10% of

unpolarized light.

28. Total reflexion. When a ray is totally reflected, there

is no refracted ray, but equations (6) and (7) still hold, provided

we give to the angle of refraction the imaginary value which it takes

according to the laws of refraction, interpreting amplitude, when
it contains an imaginary term, according to principles explained in

Art. 8. If 9 denote the angle of incidence, in a medium of refractive

index p, the second medium being air, the law of refraction is

p sin 9 = sin 0X

and total reflexion takes place if sin9>l/p. In that case we may
separate the imaginary and real parts for light vibrating normally to

the plane of incidence as follows :

sin (0X - 9) = sin 8X cos 9 - cos 61 sin 8,

sin (91 + 9)
- sin 81 cos 6 + cos 9X sin 6

;

sin @i cos 9 — cos 0
X sin 9

m 9
— . —

n
sin 91 cos 9 + cos 9X sin

8

'

All quantities are real except cos 8X . The expression for rn is of the

form (p —iq)!(p + iq) and hence, according to Art. 8, the amplitude is

one. This was to be expected, since we are dealing with total leflexion

* Ann. de Chemie et Fhys. xxx. p. 159 (1850).
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Under these conditions, the complex amplitude is of the form

and its real part measures the cosine of the change of phase (Sj). The

real part of (p — iq)j{p + iq) being (p
2 - q

2

)l(p
2
+ q

1

) we find, by reference

to Art. 8,

cos Si =

As special cases we have

1 + ju.
2 - 2m

2
sin

2 9
(9).

for sin 9 =
1

81 = 0
,

for 9 = ^ ; 8, = w.
A

This shows that at incipient total reflexion there is no change of phase

and at grazing incidence, a reversal of phase.

In order to reduce the tangent formula, we transform as follows :

tan (9, — 9) _ sin 291 — sin 29

tan (#1 + 0) sin 29, + sin 29

_ (sin 2#! — sin 2#)
2

sin
2 29,- sin2 2#

’

Here sin 29, is imaginary, but its square is real, hence for the real

portion of the fraction we have

_ sin
2
29, + sin2 2#

C0S 2
“sin2

29, -sin2 2#

_ /x
2 cos2

9, + cos2 9

fJ? COS
2 #1

- cos
2 #’

or finally

cosS2
=

As special cases we have

(/x
2 + 1) - (/x

4 + 1) sin
2 9

(/x
2 -

1) — (nx
4 -

1) sin2 9

for sin 9 - -
;

S.2
= tt,

(10).

for 9 = ^ ;
82 = 0.

The difference in phase of the two components is best obtained directly

by taking the real part of rn/rp which is equal to cos (Sj - 6„).

r + ^ - s*n (#1 ~ 0) tan (9, + 9) _ cos (#x - 9)
U

rp sin (9, + 9)

'

tan (9, — 9) cos (9, + 9)

__
cos 9 cos 9, + sin 9 sin 9,

cos 9 cos 9,
- sin 9 sin 9, ‘

As the only imaginary quantity is cos 9,, the expression is of the form

p + iq

—p + iq ’

the real part of which is (g
2 -/?2

)/^
2

+i?
2
).
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Hence

/s _ c°s
2 ^ c°s2

^i + sin
2 ^sin2 0I

cos( x 2)
-

cog2 q cog2 ^ _ g^u2 0 sin2 ^

_ 1 + 2/x
2
sin4 0-(l +/a2

) sin
2 6

" 1-(1+^2

) sin
2 0

{ll) ~

Equations (9) and (10), though giving us the values of the changes

of phase, are unable to distinguish between an acceleration or retarda-

tion, and equation (11) does not tell us which of the two vibrations is

ahead of the other. This ambiguity cannot be solved by the mere

transformation of Fresnel’s formulae. We may, it is true, show by
means of (11) that Si — S2 does not pass through zero, and hence reason

that if Sj is positive, S2 must be negative, but recourse must be had to

the complete dynamical theory in order to decide which component is

accelerated. Though the subject has often been treated by various

writers, it was only in 1884 that Lord Kelvin* pointed out for the first

time that it is the vibration in the plane of incidence which is retarded,

while the normal vibration is accelerated, and also that the difference

of phase with the materials at our disposal, is always an obtuse angle.

The latter conclusion may be derived from equation (11) as it is readily

shown that the numerator within the range of total reflexion is positive

and the denominator negative.

At incipient total reflexion (where fi sin 9 = 1) and for grazing

incidence, there is a phase difference of 180°. Between these two

limits of 0 there is one angle for which the difference in phase is

least. This angle is obtained from (11) by putting the differential

coefficient of the right-hand side with respect to sin
2 6 equal to zero.

This gives

(/u.
2 + 1) sin2 0 = 2;

the corresponding minimum retardation or maximum value of

COS^i-Sa) is

««(*.-«— (12).

An important practical application of these results was made by

Fresnel. If it were possible to make the right-hand side of (11) equal

to 0, there would be a phase difference of a right angle, which, if the

original light was polarized at an angle of 45°, so as to make both

components equal, would give circularly polarized light (Art. 6).

Among the media at our disposal, there is none with a refractive

index sufficiently high to give a difference of phase as small as tt/2, but

we can secure circularly polarized light by means of two successive

reflexions, if Sj — S2 = 3 tt/4.

* Baltimore Lectures
, p. 400.
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Equation (11) may then be written

2/ sin4 6 - (1 + V£) {(1 + /*
2

) sin2 6 - 1 }
= 0.

This is a quadratic equation which may he solved, and has in

general two roots. Thus for glass of refractive index 1'5, 1*55 and

1'6, the following table gives the calculated values of the two solutions

and 02 .

Table II.

fl= 1-5 1-55 1-6

$1 -$2=135°
50° 14'

53° 13'-5

45° 14' 5
57° 5' Cfr

4^

o

0

4^

Fresnel’s rhomb is a rhomb of glass (Fig. 34)

which gives circularly polarized light after two total

reflexions in the manner described.

Of the two possible angles for the rhomb, the

larger is chosen, because it gives a smaller error

for slight changes in refrangibility or deviations

from the theoretically correct incidence.

Fig. 34.



CHAPTER, IV.

THE PRINCIPLE OF SUPERPOSITION.

29. The Interference of Light. Huygens drew attention to

the observation that the passage of a beam of light through an aperture

is in no way affected by the passage of another beam through the same

aperture. As he pointed out, different people may look at different

objects through the same opening without noticing any blurring due to

the overlapping of the large number of waves which must pass through

the opening. The waves cross each other at the aperture without in

the least interfering with each other’s course.

We explain this independence of the separate waves by the principle

of superposition (Art. 15) according to which the combined effect of a

number of displacements may be obtained by adding the separate

displacements, taking account of direction as well as magnitude.

The principle of superposition may be applied also to velocities and

accelerations but not to the squares of any of these quantities. In

Art. 4 it has been shown that two periodic motions of the same

frequency, of amplitudes au a2 and phase difference 8, combine to form

a periodic motion having an amplitude the square of which is

a,i + a2 + 2ax a2 cos 8.

The principle of superposition applied to the squares of amplitudes

would account for the two first terms only and would therefore give

erroneous results.

The illumination of a surface on which light falls depends on the

square of the amplitude and in a most important group of optical

phenomena, the results seem therefore to contradict the principle of

superposition. It is indeed found that two rays of light may neutralize

each other’s effects so that darkness results where there wfis light when
each ray produced its separate illumination. This effect has been

called “interference of light.” The term is a convenient one because

it allo\s£ us to group together a certain class of phenomena but it is

iuipoiuuit to realise that interference is a direct result of the principle
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of superposition. If “ interference ” is to retain its position in Physics

as a convenient term it becomes necessary to define it clearly and to

adhere strictly to the definition. I shall adopt the following:

If the observed illumination of a surface due to two or more pencils

of light is not equal to the sum of the illuminations due to the separate

pencils
,
we say that the pencils have interfered with each other and class

the phenomenon as one of “ interferencef
The distinctive feature of the definition is the inclusion of the

adjective “observed.” It means that the effects must be observed

directly and not only be capable of being made visible by some
additional appliance such as a spectroscope. The importance of this

point will appear when we discuss special cases.

combined effects due to two
separate sources. Let P and Q
(Fig. 35) represent two particles

which are sending out waves, the

motion at P and Q being simply

periodic. Let the vibrations be in a

direction perpendicular to the plane

of the diagram and identical as re-

gards amplitude and period, and let

the phases at P and Q be the same. Consider a point S on a distant

screen, the plane of which is parallel to the line PQ and perpendicular

to the plane of the diagram.

The two motions produced by P and Q at 8, considered as acting

separately, are parallel to one another, since they are both per-

pendicular to the plane of the diagram, and they have also

approximately the same intensity, if the distance of the screen

from the two sources is great compared with the distance of the

two sources from one another. There will be a difference of phase

between the two vibrations due to difference of the distances PS and

QS. If B be a point on PS, such that PR — QS, the phase at R of the

vibration transmitted along PS, must be the same as the phase at S
due to the vibration transmitted along QS. Hence the difference

^7T
of phase between the two vibrations at S, will be (PS— QS).

Let C be the middle point of PQ, and from G draw ON perpen-

dicular to the plane of the screen, and cutting it in the point N.

Let
* CN=f, NS=x, and PQ = c.

Then PS2 =/a
+ (as +

-f (1),

««?=/>+(*- |)’ (2).

30. Calculation of the

p

Fig. 35,
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Hence PS2 — QS2 = 2cx.

Therefore PS- QS = 7 .^ PS + QS

If x is small compared to /, we may write 2/ instead of PS + QS,

the error committed being of the order of magnitude a?j/2
.

The difference of phase between the two vibrations at S is therefore

2ir xc

TV-
Let a denote the amplitude which would be produced at S by each

source acting separately.

Then the resultant amplitude at S, due to both sources, is

2acos^.yJ (3).

The amplitude is variable and depends on the angle xjf.

Thus considering points situated on the line NS on the screen, the

point N for which x = 0, is a point of maximum intensity.

The intensity at points on either side of N diminishes sym-
X f

metrically, and becomes zero when x = ± ~ . After this the intensity
ZG

increases and reaches a maximum again when x = + 2 .

The points of maximum intensity are at equal distances — apart
c

and the points of minimum or zero intensity lie halfway between the

points of maximum illumination.

So far only those points have been considered which lie in the

plane PQN, but there is no difficulty in including points outside

the central plane. If a point T be taken vertically over S, and at a

distance z from it,

PT2 = PS2 + z2

QT2 = QS 2 + z2

PT2 - QT2 = PS2 - QS2
.

As long as PT is, to the approximation required, equal to PS, t.e. as

long as z2
is neglected,

PT- QT=PS - QS.

Hence the illumination at T is the same as the illumination at S, and

the illumination of a screen placed at NS consists therefore of a system

of alternately bright and dark rectilinear bands, which are at right

angles to the plane PQN.
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If the distance of the screen is altered, the distance of the bands

diminishes in direct proportion to the distance from the source, and all

bands for which the difference in optical length PS - QS is the same,

lie in a plane at right angles to the plane of the paper, and passing

through CS.

These results require some qualification as they depend on the

squares of x and z being neglected. The complete investigation is

not, however, difficult. The locus of the surfaces of equal difference

in phase is determined by the condition that PS - QS is a constant,

a condition which defines the surfaces as hyperboloids of two sheets

having P and Q as foci. The intersections of these hyperboloids with

the plane of the screen are hyperbolas, and not straight lines, as found

by the approximate method, but when the distance between P and Q
is small, and those bands only are considered which are situated near

the centre of the screen, the hyperbolas are very slightly curved, and

may, near the central plane, be considered to be straight lines.

If the two sources of light are not in the same phase, but vibrate

with a difference of phase which remains constant, the interference

bands are formed as before, but the whole system is shifted to one

side.

Let the vibration emitted from the source P be represented by

a cos (2tt and that from Q by a cos 2ir . Then at a point S

on the screen, the difference of phase, which before was
^ ^

will now be
^

+ a and the position of the bands will be
A

given by the equation

PS - QS = n\ - a\

2tt
’

The bands are still at the same distance \f/c apart, but the whole

system is displaced sideways by an amount equal to \fa/2Trc. The

assumption that the oscillations at P and Q are perpendicular to the

plane PQN
,
may be removed, provided that these oscillations are

parallel to each other, for under experimental conditions the distance

PQ is so small compared with the distance of the screen, that the

inclination between the displacements at S caused by parallel dis-

turbances at^P and Q may be neglected.

31. Conditions necessary for the experimental illustration

of interference. Two homogeneous sources radiating from two points

near each other, would, according to the last paragraph, produce a

pattern of unequal illumination on a screen, though the position of the

bands of maximum and minimum illumination could not d priori be
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determined unless we knew the differences in phase between the

oscillations of the sources. It is observed that interference does not

take place when the two rays are derived from two independent sources

and this is the best proof we have that no available source of/light

emits homogeneous light. Quasi-homogeneous light requires for its

analytical representation the overlapping of a number of waves having

closely adjoining wave-lengths X1} X2 ,
etc. If we pick out a particular

wave-length Xn and combine it with the same wave-length coming from

the other source, we should obtain on the screen an interference pattern

having a position on the screen which depends on the relative phases.

Another wave-length would in general give the same pattern in a

different position. The superposition of all wave-lengths would

produce an average uniform illumination of the screen. Hence

:

“ Independent sources of light even when emitting quasi-homogeneous

light do not give rise to interference effects.”

The experimental conditions of interference are obtained by deriving

the oscillations originally from the same source. Two centres of

radiation emitting vibrations which are related in phase owing to their

having originated at the same ultimate source are said to be “ coherent.”

32. Young’s experiment. Both on account of its historical

importance and the simplicity of its arrangement, Young’s experiment

deserves the first place. Two small apertures P and Q (Fig. 36) were

illuminated by light which originally had passed through another

aperture at 0. After passing through P and Q, the waves spread

out in all directions, and falling on the

screen iSS', produce equally spaced inter-

ference bands. If P and Q are equi-
'9 distant from 0, the phase at P and Q

will be the same, hence the central band

will be at JV. The equality of phase atP
^ s and Q holds for waves of all frequencies,

and therefore the experimental conditions

of Art. 31 are realized, and (3) correctly
36. represents the distribution of amplitudes.

As the distance between the bands de-

pends on the wave-lengths, the light should be nearly homogeneous,

if it is desired to observe the effects under the simplest conditions.

A great number of bands may thus be seen. To give a» idea of the

scale on which the experiment has to be conducted, we may take as

an example, the distance between P and Q to be 1 mm. and the

distance of the. screen from the aperture to be 1 metre. The distance

between the bands is then for red light

V
c

6 x 10- 5 x 100

T
= '06 cms.
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and similarly for blue light ‘04 cms. The bands are therefore very

close together; if we wish to space them further apart, either the

distance of the screen has to be increased, or the apertures have to be

put closer together.

33. Fresnel’s experiments. In Fresnel’s celebrated experi-

ments, the two dependent sources were secured by forming two

vertical images of a narrow ittuminated slit.

Fresnel’s Mirrors. In the first of the two methods to be described,

two inclined mirrors were used to obtain the vertical images.

In Fig. 37 OMx and OM2 represent two plane mirrors, which have

their planes at right angles to the plane of the diagram. Two images

A and B are formed by reflexion of the light coming from S,

The distance between the two images depends upon the angle of

inclination of the two mirrors. Let D be the middle point of AB and

let DO be produced to meet a distant screen in C. Then 0 will be

the centre of the system of interference bands, formed upon the screen.

To calculate the distance between the two images A and B, we note

that A being the image of S formed by the plane mirror OM2 ,
the

distance of A to any point on OM2 is the same as the distance

from S to the same point. Hence OS = OA. Similarly OS=OB.
Hence the points A

,
B and S lie upon a circle with centre at 0-

Hence ^ AOB = 2 ^ ASB
= 2«,

where « is the angle between the two mirrors.

Therefore Z BOD = <o.

Now let OS = b and OC= a.

Then DO = b cos w and DC = a + b cos w.

Also AB = 2BD = 2b sin «.

The distance between the bands produced on the screen by two

sources of light, has been proved to be hf/c.
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In this case f = DC= a + 6 cos «,

and c = AB = 26 sin o>.

Therefore the distance between the bands produced byFresnel’s

. A (a + 6 cos to) . . „ ,
A (a + b)

mirrors is - - or, since <o is a small angle, —
26 sin to

*
’ 26o>

Fresnel’s Biprism. In

p

V

Q
Fig. 38.

the second method, the two images are

obtained by doubling a single source

by means of refraction. Suppose two

similar small-angled prisms OPR, OQR
H are placed base to base as in the figure.

K This constitutes what is termed Fresnel’s

Biprism. If a source S is placed sym-

metrically behind the two prisms, two

virtual images of it are formed say at

A and B.

To calculate the distance between the bands, we make use of the

fact that a prism of small angle a deviates any ray which falls on one of

the faces in a direction nearly normal to it by a quantity (jx — 1) a,

where a is the angle of the prism. Hence the vertical images of the

slit are at the same distance from the prism as the object, and if b

be the distance of the slit from the prism, 2 (ju.- 1) 6a measures the

distance between the vertical images. If a be the distance of the

screen from the slit, the general expression for the distance between

the bands reduces to

Aa

26 (p — 1) a
*

It should be noticed that the distance between the vertical images in

this case, which represents the distance between the two sources of

light producing interference, depends on the refractive index, and

therefore on the wave-length. Plate I. Fig. 1 is a photograph of

the interference bands formed by Fresnel’s biprism. The rhythmic

variation in the intensity of the bands is due to a diffraction effect

which will be further alluded to in Art. 36.

34. Subjective method of observing interference bands.

When interference phenomena are observed on a screen in the manner

described, the bands are very close together, unless the screen is at

a considerable distance from the sources, and in that ease, a strong

light has to be used if the bands are to be seen. There is, however,

no difficulty in magnifying the bands by optical means. It has been

shown in Art. 22 that the optical distance between object and image

formed by a lens, is the same when measured along all rays. If there-

fore the screen be removed, and the rays crossing at any point P be
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focussed by a lens on another screen, the difference in phase between

the two rays at the geometrical image of P is the same as the difference

in phase at P The interference pattern on the second screen will

therefore be an image of the interference pattern on the original screen.

If the lens in this argument is represented by the focussing arrange-

ment of the eye, so that the retina represents the second screen, the

interference effects will be seen just as if they were projected on a

screen coincident with the plane for which the eye is adjusted. We
can also interpose between the eye and the plane for which the eye is

focussed a magnifying glass or eye-piece, and this enables us to measure

the distance between the bands, for we may introduce a movable cross-

wire in the focal plane of the eye-piece. This is practically Fresnel’s

arrangement, and the one which is generally adopted.

If the interference bands are observed through a telescope focussed

for infinity, the interference pattern at the focus of the telescope is

the image of that which would be formed at infinity, were the

telescope away.

The simplest mode of seeing Young’s interference bands has been

described by Lord Rayleigh*. Two plates of glass are silvered
;
a fine

line is ruled on one of them, and two fine parallel lines, as close

together as possible, on the other. The ruling of the lines removes

the silver film, so that we have now two opaque plates, one containing

one slit, and the other, two slits close together. If the double slit is

placed close up to the eye, and the other a short distance from it,

interference bands are seen when the two plates are so adjusted that

their slits are nearly parallel. The whole arrangement is easily con-

structed, and can be mounted in a tube.

35. Observations with quasi-homogeneous and white light.

Our calculations based on the ideal case of homogeneous light are, up
to a certain point, applicable to such quasi-homogeneous radiations as

are at our command, because the position of the interference fringes

belonging to two nearly equal wave-lengths \ and X2 occupy nearly

coincident positions, when the difference in path of the two interfering

rays is only a few wave-length^ As the difference in path is increased

the fringes cease to be coincijrent and therefore appear less distinctly

until ultimately the interfereipe effects cease altogether. To illustrate

this with the help of the fornjulae already obtained, consider two values

of Xj and X2 io be the extreme wave-lengths emitted by a quasi-

homogeneous source. The distance of the rath band (excluding the
central one) from the centre is, with the previous notation, raAj//c, and
so long as the difference between n\ and n\ is only a fraction of the

* British Association Report, 1893, and Collected Works
,
Yol. xv. p. 76.
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wave-length, the fringes are practically overlapping, hut when that

difference amounts to half a wave-length the bright bands due to Ax

are coincident with the lines of zero illumination belonging to A2 and

the fringes cease to be visible. An interesting effect occurs when
fringes are formed by sodium light which emits two sets of quasi-

homogeneous radiations (the two sodium lines) having wave-lengths

respectively in the neighbourhood of two values of A
x and A2 differing

by the thousandth part of their-value. In this case therefore when n
is 500, n (Aj — A2) is equal to half a wave-length and the two inter-

ference patterns dovetail into each other in such a manner that the

fringes become very indistinct or cease to be observable. But when n
is 1000, or any multiple thereof, n (A

x — A2) is a multiple of a wave-

length and the fringes again occupy identical positions. The fringes

therefore show a periodic variation as the difference in path increases,

becoming alternately distinct and indistinct and this continues until

the want of homogeneity of each radiation separately destroys the

interference effects.

The investigation of quasi-homogeneous radiation might easily be

extended to white light but it is interesting to vary the point of view

and to treat white light as a series of impulses in the manner explained

in Art. 20. Let therefore two identical impulses start simultaneously

from P and Q (Fig. 35). It is obvious that they will reach the screen

simultaneously only at the point N. At every other point S they will

follow each other at an interval which is the greater, the greater the

distance NS. As there can be no interference except by overlapping we
must conclude that no interference effects take place with white light.

This seems to be contradicted by observation and an instructive insight

into the phenomena of interference is gained by solving this apparent

antagonism between two views which we know to be analytically

identical. When observing interference effects with such white light

as is at our command we notice a few coloured bands somewhat

resembling the fringes observed with quasi-homogeneous light but less

distinct. There is undoubtedly here an interference effect, but all we
have a right to assert is that the interference is on the retina or rather

in our physiological sensation. We can draw no conclusion on the

presence or absence of interference on the screen on which we
apparently see the interference pattern. To make this point clear

imagine for a moment that the disturbance is a mechanical one which

can set a pendulum placed at S into motion. The swing of the

pendulum after the two impulses have passed over it depends on the

relation of the time interval between them and the periodic time of the

pendulum. If the interval is equal to the period the resulting motion

of the pendulum will be a maximum, if the interval is half a period
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the effect of the first blow will be neutralized by the second. In the

latter caf?e therefore there will be interference of the two disturbances,

but the interference is in the pendulum and not in the medium
through which the disturbance has passed. The essential point to

note is that if an instantaneous impulse produces an effect on the

pendulum which is lasting, two successive impulses can mutually

interfere, because they are now able to add their effects. The case

of disturbances producing luminous sensations in our eyes is analogous.

The fact that our retina is more sensitive to oscillations of certain

periods and that different periods produce different sensations proves

that there is some mechanism which responds to an impulse just as the

pendulum responds to a blow. The effect of an impulse is in both

cases a directed motion which does not disappear instantaneously and

successive impulses are therefore capable of interfering with each

other. The same argument holds if the interference fringes are

received on a photographic plate. The interference here is due to

the mechanism wdiich makes the plate more sensitive to certain

radiations than to others. To free ourselves from these actions we
must determine the energy conveyed by the combined radiations and

this can be done by means of a bolometer or thermopile. If the

duration of each impulse were indefinitely short the thermopile would

indicate no interference with Fresnel’s mirrors or any other arrange-

ment capable of showing interference with homogeneous light. The

instantaneous impulse may be looked upon as an ideal white light:

an extreme case which just as the ideal homogeneous wave, is not

realised in nature. The light such as we find it emitted by a

luminous body though called white, changes in character with the

temperature and gives some preference to certain radiations over

others. To represent this quasi-white light we must, as has already

been pointed out, give the impulse such form and duration as will

make the distribution of energy along the spectrum agree with observa-

tion. Its shape then approaches that illustrated by Fig. 10 and the

distance which it covers may be taken to be approximately three wave-

lengths of red light, becoming shorter with rise of temperature. If we

are still allowed to call a disturbance of this kind an impulse it may be

seen that in close proximity to N (Fig. 30) the two impulses overlap

and here therefore some interference may take place, but there are no

fringes, i.e. there is no rhythmic variation of intensity. If instead of

observing with the eye or a photographic plate we were to measure the

heating effect of the interference pattern of a double source, we should

find a diminution of intensity from the centre outwards, reaching

a minimum when the retardation is about half the wave-length at

which the white light has its maximum of intensity. The illumination

s. 5
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then increases to a maximum after which it very slightly falls off and

remains constant*. - /

If we place the slit of a spectroscope at a point S of the screen,

where with eye observations no interference is noticed in white light,

the spectrum may be found to be traversed by interference fringes.

In the light of our definition of interference this must be interpreted

to mean that the interference is produced in the spectroscope. We
shall indeed find when we come to discuss the theory of gratings that

they convert each impulse into a series of impulses so that when two

separate impulses follow each other their effects in the spectroscope

may overlap with the result that they can interfere. At present we
may deal with the effects observed when a spectroscope is used to

examine an interference in white light by decomposing the light into

its homogeneous constituents. Equation (3) gives for a given distance

x from the centre the resultant amplitude, the illumination is con-

sequently proportional to

cos
U7/*

According to the value of A. this varies between 0 and 1, and if the

spectroscope separates the constituents the spectrum is seen to be

crossed by bright and dark bands. If N represents the wave number,

i.e. the number of waves per centimetre, a bright band appears when

n being an integer number,

on a scale of wave numbers,

which bright bands appear

The bands are therefore equally spaced

If Ni and N2 are two wave numbers at

where Ar2 would define the mt\\ band counting from Wj.

By counting the number of bands in a given part of the spectrum
between wave-lengths which are respectively equal to 1/Ah and 1/JV2 we
may therefore determine the number n, where ra/A^ is the difference in

path between the two interfering rays.

36. Difficulty of illustrating simple interference pheno-
mena by experiment. The simple mathematical treatment of the
interference phenomena which we have so far studied, neglects certain

* Phil Mag. Vol. xxxvn. p. 541. (1894.)
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effects which disturb the simplicity of the experimental verification.

Thus the biprism of Fresnel (Fig. 38) shows .interference only in the

angle IIOK, but a wave diverging from A and limited at 0, the

extreme geometrical boundary being OK, is not propagated entirely like

a complete spherical wave. Certain so-called diffraction effects, which

will have to be discussed in detail, take place ; these alter the distribu-

tion of light, especially in the neighbourhood of the extreme rays OH
and OK, and there appears a rhythmic variation in the brightness of

the fringes, which sometimes makes their measurement difficult. The
bands seen in Fresnel’s mirrors are subject to the same irregularity,

owing to the limitation of the beams by the rays AO and BO.
Young’s arrangement is free from this particular defect, but suffers

from another. The slits at P and Q do not radiate light equally in all

directions, but the intensity is a maximum in the directions OP and

OQ respectively, and there are some directions (Art. 53) in which the

light is totally absent. Hence here also, though from a different

cause, the experiments give a rhythmic variation in the intensity of

the interference fringes, which affects to some extent the positions of the

maxima. We are therefore led to look in another direction for experi-

mental methods to show interference in its simplest form.

37. Light incident on a plane parallel plate. When light

is incident on a plane parallel plate, images of the source are formed

by reflexion at the two surfaces ; the reflected and transmitted beams

maythen show interference effects due to the overlapping of the waves

coming from these images.

Let LM and II
M'

(Fig. 39) be the parallel surfaces of a transparent

plate, and AB an incident plane wave-front, which gives rise to a

reflected wave CD and a refracted wave RS. This refracted wave will

be reflected internally so as to be parallel to R'S' and however many
internal reflexions take place all wave-fronts inside the plate are equally

inclined to the surfaces and must be either parallel to RS or to R'S'.

Similarly all waves which pass out of the surface LM must be parallel

to CD and all those passing out of the surface LM' must be parallel

to A'B' which is parallel to AB. We have therefore in the reflected

and transmitted beam a series of wave-fronts following each other at

regular intervals. The plate may be looked upon as being a resonator

which sends the incident energy to a greater or less extent in the forward

or backward direction according to the relation between that interval

and the wave-length. The result will be a flux of light inside the plate

normal to RS and R'S' respectively. We shall neglect any absorption of

light in the glass plate, so that the sum of the intensities of the reflected

and transmitted beams must equal the intensity of the incident beam.

5—2
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The first step in the calculation must consist in obtaining the

differences in phase of the different coincident wave-fronts. Making

use of the fact that we may calculate optical distances between two

wave-fronts along any ray connecting them, we may take some one

wave-front AB in the incident beam (Fig. 40) and some one ray BS,

which at S is reflected towards P. Tracing the ray PS backwards

through the plate, we find a ray B'H such that starting from the

original wave-front AB, it coincides with SP afte’r one internal

reflexion at E and refraction at S. The phase at P of the wave to

which this ray belongs is determined by its phase at B, and the optical

length of B'HESP. Similarly we may obtain a number of rays

through B”, B'", Biv
,
which will coincide along SP having been

reflected two, three and four times, at the lower surface of the plate.

The difference in optical length between the two first rays is the

same as the difference in optical length between HE+ES and KS,
K being the foot of the perpendicular from II on BS. If BS is drawn

at right angles to HE, the optical length of KS is the same as that of

HR. This follows from the fact that II

K

and BS are parallel

respectively to the incident and reflected wave-fronts. The difference

in optical length is now that due to the path BE + ES, or drawing

the normal to the plate through S and producing HE to F, its point

of intersection with the normal
;
the difference in optical length is

fiRF where g is the refractive index of the plate. Noting that SF is

twice the thickness of the plate (e), and that the angle at F is the

angle between the refracted ray II

F

and the normal to the plate, for
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which we may write y, it is finally found that the difference in optical

length is 2fie cos y. To obtain the difference in phase at P, we must,

however, take account of the fact that the reflexions may be ac-

companied by change of phase, and we have already shown (Art. 25) that

according to the principle of reversibility, there must be a change of

two right angles at either internal or external reflexion.

A difference of phase of two right angles is equivalent to the

addition to the optical length of a quantity equal to half the wave-

length A measured in vacuo. The difference in path is therefore

finally

« *
2/ie cos y + -

.

If we only considered the superposition of the wave which is reflected

externally on the one reflected once internally, we should find that

the intensity of the reflected wave would be a minimum whenever

^ A mX
cos y + - =—

,

m being an odd number, or by transposing, when

2/ie cos y = n\

n being any integer. It will be noticed that the difference in path

becomes less, as y, and therefore also the inclination of the incident

beam, increases.

Before discussing the bearing of this equation, we extend the

investigation so as to include multiple reflexions.

We take the vibration at S, due to the incident light, to be

represented by cos for which, according to Art. 8, we write eiwt
,

rejecting at the end of the investigation the imaginary part. The
vibration at S in the reflected wave may then be written rei<ot

, where r

is real, if there is no change of phase. An incident wave of unit

amplitude would then be reflected as a wave of amplitude r.

We may similarly apply coefficients t to the waves which are

transmitted from the outside to the inside, t' for waves transmitted

from inside to outside, and s for waves reflected internally. A change

of phase would be indicated by the coefficients ceasing to be real.

Taking account of the fact that each of the rays in Fig. (40) has

passed through a distance which is longer than the preceding one by
the same quantity, of which we have already found the optical

equivalent to be 2fie cos y, the corresponding difference in phase is

8 = (4ir/ue cos y)/A.

Hence we may write for the vibration at S of that ray which has been

once reflected internally stt'ei^t
~ &

\ and for the ray reflected internally
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three times, the expression becomes sHt'e so that the factor of

e
itat

jn the complete effect at 8 becomes

r + stt' (e~ iS + s
2e~~ iS + s

4e~sis + ).

The terms of the geometric series in brackets converge towards zero,

and may be added up. We thus find for the amplitude

r + stt'

7 — iS

.(4).
1 -s‘

2
e~ iS

Dealing similarly with the transmitted waves, the successive vibrations

at E, on emergence, are found to be tt!e
l

;
sHt'ei^t ~ e ~^ etc. if c

is the difference in phase between 8 and E, so that the factor of ei

in the resultant vibration becomes

tt' (1 + s
2
e~ i8 + + ),

1
or tt'

1 —s2
e
~ iS

'

Experiments show that we are justified in assuming that reflexion

and refraction at the surface of transparent bodies involve no change

of phase, except, in certain cases, a change of which is equivalent to

a reversal of sign of the amplitude. We may then apply the relations

found in Art. 25 for this case, i.e.

r + s = 0,

tt' + r2 = 1.

The expressions for the reflected and transmitted beams then

become for the reflected wave

1 — e~is

r

and for the transmitted wave,
1 — r2e~ i&

tuit

1-r2

1 —

The intensities Ir and I
t for the reflected and transmitted waves

are obtained by the rule given in Art. 8

:

4r2 sin2 - 4r2
sin

2

2
r 1+ r* — 2r2

cos 8
(1 — r2

)
2 + 4r2

sin2 -

It
(1 -rj (i-^r

y

1 + r4 - 2r2
cos 8 . .

2 . 2
8

(1 - rf + 4r2
sin

2

•(5),

from which it follows, as expected, that

Ir + It — 1 .

The reflected and transmitted beams are therefore always comple-

mentary. In the reflected beams, the intensity is zero whenever

8
sin

2
= 0,

2pe cos y = mXi.e. when
(6 ).
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If the incident light consist of a number of parallel pencils such as we

receive, e.g., from the sky, the reflected and transmitted light in dif-

ferent directions will depend on the angle of incidence, the angle of re-

fraction entering into the expression for S. When the reflecting power

is small so that r4
is negligible, the expression for the intensities reduces

g s
to the form: Ir = 4r2

sin
2 -

; /* = 1 - 4r" sin
2 -

.

Z A

In the reflected light, the distribution of intensities in different

directions then follows the same law as that with which we are familiar

in the case of the interference of two equal sources (Art. 30), while in

the transmitted beam, white light is superposed so that the relative

changes of intensities are small. The result is altogether different when
the reflecting power is large. Fixing our attention on the transmitted

light, we may write for the reciprocal of the intensity

:

1 +
(l - r2

)
2
Sm

2
'

For glass and nearly normal incidence, r2
is approximately '05, and the

g
factor of sin2 - amounts only to ’Oil. The difference between the maxi-

mum and minimum intensity is therefore only about one per cent. But
if the reflecting power is '9, which is equal to that of silver, the factor

becomes 360, so that, at the minimum, less than one-third per cent, of

the incident light is transmitted. An examination of the above expres-
g

sion will moreover show that near the incidence for which sin - = 0, the

intensity diminishes very rapidly. This implies that in the transmitted

beam almost all the light is concentrated in directions very near to

those for which the light is a maximum.

38. Colours of thin films. Although there is no difference

in principle between the interference effects observed with thin films

or with thick plates, the method of observation most favourable in one

case is not suitable in the other, and it is therefore convenient to treat

each separately. We consider first the case of thin films.

Let an eye focussed on S be placed at P (Fig. 40), and let the

incident light be derived from a distant extended source. The rays

which enter the pupil have all passed through S but belong to waves

which originally fell on the plate at different angles, and therefore

have different intensities when they reach S. The relative retardation

of successive rays being 2fxe cos y, the difference of retardation produced

by a small change dy of y is 2p e sin ySy, where y is the angle of incidence.

It may easily be calculated that, when e is not more than about

thirty wave-lengths and we allow for Sy the range which is necessary

to fill the pupil with light when the eye is placed about a metre from
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the film, the change in retardation is only a small fraction of a wave-

length and the unequal inclination of the beams does not cause any

serious change in the appearance. We may therefore discuss the

effects by considering only the central ray SP entering the eye. The
interference fringes depending only on the angle of inclination are

circular rings having as centre, N, the foot of the perpendicular drawn

from the eye at P, to the surface of the plate.

The directions of maximum illumination depending on ft and there-

fore on the wave-length, colour effects appear in white light and we
explain in this manner the colours of soap bubbles, of thin layers of

oily matter and other thin films. In the mathematical discussion of

these colour effects wTe may use the results of the investigation of

Art. 35, substituting for the retardation (xcjf) the one applicable to the

present case. If the reflected light were examined by the spectroscope

the number (m— 1) of bands between two wave-lengths determined by
their numbers Nx and N% is therefore

— Ah) 2f<.e cos y.

If we take' for wave-lengths at the limits of the visible spectrum

6'5xl0~s and 4 x 10~5
,
m becomes equal to 2fxe cos y x 104

. If the

refractive index be that of water and y = 45°, the number is approxi-

mately equal to 19000c. If brilliant colours are to appear to the naked

eye there should not be more than two dark bands in the spectrum.

Putting m — 2 we find that e must not be more than 10-4, which is

about equal to twice the wave-length of green light. Hence brilliant

colours are only seen when the thickness of the film is of the order of

magnitude of a wave-length. As the retardation becomes less with

increasing angle of incidence, the brilliancy of the colour is greater

with oblique incidence.

39. Fringes observed with thick plates. When the plates

are thick, nearly homogeneous light must be used. Taking PS
(Fig. 40) to be one of the incident rays, it is necessary for complete

interference that all the rays passing through B, B', B", etc. should

be brought into coincidence, or at any rate, all those which have

sufficient amplitude to contribute appreciably to the effect. When
the plate is thick, these rays may be too wide apart to enter the pupil

together, and in that case, observations must be made through a

telescope. If, on the other hand, SP is considered to be the reflected

ray, it follows that the incident wave must have a sufficient width.

Hence it is necessary for satisfactory observations to have either a

wide incident beam, or to collect a sufficient number of rays in the

reflected beam.

The complete wave-front AB gives rise to a number of rays
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parallel to SP, which have the same phase along a plane drawn

through P and normal to SP. The eye should therefore be adjusted

for infinity, or a telescope used. Fringes produced by the reflexion of

light at the two surfaces of a plane parallel plate of thickness considerably

greater than the wave-length of light, were first observed by Haidinger,

but we owe their investigation more particularly to Mascart* and

Lummerf. If a plate of glass AB (Fig. 41),

a few millimetres thick, and carefully worked

so as to have its faces plane and parallel, be

illuminated by a sodium flame at S, and the

rays are reflected from a transparent plate

CD, so as to strike the plate AB in a nearly

normal direction, the waves partly entering

AB and partly reflected at the front surface,

will cause overlapping wave-fronts to leave

the plate. After traversing CD, these rays may be made to enter an

eye adjusted for infinity. Rings are then observed having for centre

the point which is the foot of the perpendicular drawn from the nodal

point of the eye to the plate. If it is not desired to observe the

complete rings, the plate CD may be dispensed with, and the flame

placed near the eye. If the light reflected from the plate is then

directly observed, it is found to be traversed by curved fringes.

For greater brightness, we may use Lummer’s arrangement, in which

CD is replaced by a concave perforated mirror such as that used by
oculists. The rings are observed through the aperture at the centre

of the mirror.

The condition for extinction is as before

2/xe cos y = m\,

where m is some integer and y the angle of refraction in the plate.

If 6 be the angle of incidence, and h the distance of the eye from

the plate, the radius of the ring is

h sin 0 = fj.h sin y.

This leads to the following construction (Fig. 42). On the radius OA

of a circle take a point Ki such that
>OA 2fie

where m0 is the highest integer which gives to

the fraction on the right-hand side a value less

than one. From Kx mark off' towards 0, equi-

distant points, Ka , ... Kn ,
the equal distance being

\OAj2fxe. From Kly Ka ,
etc. draw perpendiculars

to OA meeting the circle in /Si, /Si ... . Then on a

* Ann . Chim. Phys . xxm. p. 16.

+ Wied. Ann. xxm. p. 49.
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scale in which OA represents ph, the diameters of successive dark

rings from the centre outwards are given by ATpS^; K2iS2 ;
etc.

The number of rings is finite, and equal to the highest integer

number which is less than OAjKlK2 . The centre of the system of

rings may be bright or dark according to the thickness of the plate and

the refrangibility of the light used.

Fig. 2 Plate I. is a photograph of Haidinger’s fringes obtained with

a glass plate 3 '6 mm. thick. The source of light was a small mercury

lamp, the ultra-violet rays being absorbed by a solution of quinine.

The actinic light was in consequence very homogeneous, being almost

exclusively due to a violet mercury line.

40. Michelson’s combination of mirrors. A very powerful

optical combination for obtaining interference fringes was devised by

Prof. Albert Michelson*. In principle, it is identical with the system

which has been discussed in the previous article.

Let s

,

Fig. 43, be a source of light sending out waves towards a

C‘

b

\(L

Fig. 43.

plate of glass a inclined at an angle of 45° to the wave-front. The
mirror is lightly silvered at the front, so that the incident light is

divided into two approximately equal portions, one being transmitted

towards a mirror c and the other reflected towards another mirror b.

At both these points reflexion takes place which sends the rays back

towards a. Here once more there is partial reflexion and transmission,

and two sets of wave-fronts will proceed from a towards d, one having

passed over the course sabad, and the other over the course sacad.

Neglecting for a moment the thickness of a, the optical length from

a to c and bade is the same as that from a to an imaginary mirror c

and back, c' being the image of c in the silvered surface of a. The

interference effects observed are therefore identical with those of a plate

having two reflecting surfaces b and c. Compared with the arrange-

ments previously described, Michelson’s interferometer has the advan-

tage that the passage of light between the two reflecting surfaces takes

* Described in a joint paper by A. A. Michelson and Ed. W. Morley, Phil. Mag.
Vol. xxix. p. 449. (1887.)
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place in air so that the difference in the refractive indices for waves of

different wave-lengths is very small. The essential part of the arrange-

ment is that two images of a source of light S are formed behind the

mirror b

;

if e be the distance between b and c, the distance between

the two images is 2e.

The difference in optical length of two parallel rays formed by

reflexion at b and c" respectively and brought to a focus is 2e cos y if

y denote the angle between their direction and the normal to the mirror.

But as one of the rays pursuing the path S'abaci has been reflected

externally at the surface a
,
while the other travelling along ac and back

has been reflected internally, there is an additional retardation of a

wave-length of one with respect to the other (Art. 25). The total

difference in optical length is independent of the position of S, which

may be a source of light of finite dimensions. To an eye placed at d

and focussed for infinity, the mirror will be seen to be covered with

bright interference bands which are circular rings if all the adjustments

are correct. Taking account of the change of phase at reflexion, the

rings of minimum brightness are given by

2e cos y = mX.

It is clear that the higher values of m must correspond with smaller

values of y, and that m must be smaller than 2ejX in order that y may
have a real value. If m0 be the highest integer compatible with that

condition the angular radii of successive dark rings are equal to siny.

The diameters of the rings are proportional to sin y, and

sitf y = 2 (1 - cos y) - 2
(l - =2 (l -^) + ~

,

where m =m0 — s. The first term is constant. By giving to s the suc-

cessive values 1, 2, 3, etc. we obtain the values of sin2 0 for successive

minima. If the centre itself is a point of minimum light m 0X/2e — 1 and
the radii of successive dark rings are as the

square roots of successive integer numbers,

or what comes to the same thing, as the

square roots of successive even integers. If

the centre is a point of maximum light, we
find similarly that successive dark rings are

as the square roots of successive odd integers.

In practice, the thickness of the plate a
has to be compensated. This is done by
interposing an equal plate / (Fig. 44) into

the path of the rays between a and b.

The complete theory ot Michelson’s combination of mirrors* should

* Bureau International des Poids et Mesures : Travaux et Memoires
,
Yol. vii.

Fig. 44.
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include the case of a slight inclination of the mirrors. It is sufficient

here to point out that if b and c (Fig. 43) are inclined to each other,

the optical conditions are the same as those which will be discussed in

Art. 41. When the distance of c is such that c' intersects b, there will

be a dark band coinciding with the line of intersection and the fringes

in the neighbourhood will be sensibly parallel to this line.

41. Newton’s rings. The system of rings observed near the

point of contact of a lens with a glass plate is one of the oldest of

known interference phenomena. Its elementary theory is simple,

though its complete investigation is troublesome, owing to the curva-

. ture of one of the boundaries at which light is reflected. The colours

observed in Newton’s rings are the colour of thin films, the film being

the layer of air included between the lens and the plate on which the

lens is placed. The characteristic distinction between Newton’s rings

and the phenomena we have already discussed is that the film has now

a variable thickness.

The simplest case of a film of variable thickness would be presented

by a transparent wedge (Fig. 45).

A plane wave AB falling on the wedge, we may select one ray

B'S reflected at S towards P, and another

B"H, such that after refraction at H and

reflexion at E, it meets the upper surface

at the same point S. Owing to the

inclination of the two surfaces, the re-

fracted ray SP' is not now coincident

with SP, though the inclination is small,

if the angle of the wedge is small. . The
difference in optical length between the

two rays is 2/xe cos y, or taking account

of the change of phase at reflexion, 2fie cos y + ^ . In this expression,

e denotes the length of the perpendicular from S to the lower surface

of the plate (which may be taken to be the thickness of the plate at 8)
and y is the angle of incidence on the lower surface. The inspection of

the figure explains how the expression is derived. Neglecting all rays

which have suffered more than one internal reflexion, an eye placed so

as to receive both rays SP and SP

'

and focussed on S, will observe a

maximum or minimum of light, according as 2p.e cos y is an odd or even

multiple of half the wave-length. If the source of light be extended,

waves coming from different directions must be considered. Each of

these waves supplies two interfering rays at S, and the difference in

path depends to some extent on tl^e inclination. Hence the eye focussed

at S combines on the retina a number of rays which are not under
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identical conditions, and the interference will not be • so simple or so

complete as when the plate has equal thickness throughout. The

disturbing effect will be small when the plate is thin, and may be

neglected for the first few rings in Newton’s experiment when the

thickness does not exceed more than a few wave-lengths. For thicker

plates, observations may be improved by reducing the aperture of the

pupil by interposing a slit so as to narrow the pencil of light which can

enter the eye. If the eye is focussed for a point different from S,

interference is still observed, though with a slightly changed difference

in path. This is shown by imagining the ray B"H to be shifted either

to the right or to the left. If it is shifted to the right, SP' moves to

the right, and its intersection with SP moves away from P, so that the

eye Has now to focus for a more distant point. The inclination of SP’
remains the same, but the length of the path inside the plate is longer

or shorter according as BH" moves to the right or left. It follows from

what has been said that we may apply the equations of plane parallel

plates to films of varying thickness, so long as their thickness is small.

The interference is made more complete by restricting the source so

that it only subtends a small angle at the film. If the incidence is

nearly normal, a slight variation in the direction of the incident beam
has very little effect on the difference in optical length of the two

interfering waves, which also prevents confusion of the interference

effects. Thus while in the case of the plane parallel plates

previously considered, the colours are due to the varying inclination of

the incident beam, the thickness of the plate being everywhere the

same, we now confine ourselves to the same
direction of incidence, and obtain the

colours as a consequence of the changing

thickness. Fig. 46 illustrates how New-
ton’s rings may be observed under nearly

normal incidence. The lens LI! being

placed on the plate AB, an inclined

transparent plate MN serves to reflect

light coming from the source at S, while

the eye observes the light reflected from the film included between

the lens and the plate, and transmitted through MN To calculate

the diameter of the rings, it is only necessary

to obtain a relation between the thickness at

any point e, and the corresponding distance p

from the point of contact
;

if R is the radius of

curvature of the lower surface LOL' of the lens,

the geometry of the circle gives
Fig. 47.

p
2 = e (2B — e)
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or so long as e is small compared with B, so that its square may be
neglected,

f? = 2eR.

The difference in optical length of the two interfering rays is

2e + ^, if the observation is conducted so that the medium included

between the lens and plate is air, so that /*,= 1. The diameters of the

rings of maximum illumination are obtained by making 2 <3 an odd
multiple of half a wave-length, so that they are proportional to the

square roots of successive odd numbers, while the dark rings will have

diameters proportional to the square roots of successive even numbers.

The centre of the ring system is dark, though black only when the lens

and plate are of the same material, in which case the whole light is

transmitted if there is optical contact at 0.

The minimum of light at the centre of the system of rings appears

as a consequence of the retardation A/2 at internal or external reflexion,

there being in consequence total destruction with no difference of path.

If the upper and lower surfaces are made of different material, and the

film has a refractive index intermediate between the two, the centre of

the ring system on the other hand is bright, as the half wave retardation

now disappears. Thomas Young showed this by introducing oil of

sassafras between a lens of crown glass and a plate of flint glass.

In the transmitted system of Newton’s rings, the colours are less

brilliant. Their position is easily deduced from the fact that the effect

at every point must be complementary.

Plate I. Figs. 3 and 4 represent photographs of Newton’s rings.

The same mercury lamp was used in both cases as the source of light,

the rays producing the photographic effect being principally derived

from one violet and one ultra-violet radiation. In Fig. 4, the ultra-violet

radiation has been blocked out by an absorbing screen and hence the

appearance is that due to practically homogeneous light. In Fig. 3 we
may observe the effect of the overlapping of two systems of rings

which alternately strengthen and neutralize each other. Where the -

dark and bright rings of the two systems coincide the rings are (dearly
7 ^

defined; where the bright ring of one overlaps the dark ring of the

other the rings are very indistinct. Similar effects may be observed

with sodium light owing to the difference in the wave-lengths of the

two components of the sodium doublet, but the two wave-lengths being

more nearly equal the intervals between the regions of maximum defi-

nition are much greater.

42. Brewster’s bands. When light passes through a plate

of glass, a small change in optical length may be made by slightly in-

clining the plate. If it is desired to observe so-called interference due
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to this alteration, it is necessary to interpose an exactly equal plate

into another portion of the same beam, so that in the first instance

there may be equality of path, which is then slightly disturbed by

the inclination of one of the plates. This leads to the following

arrangement due to Brewster. A plate of glass, which, should be as

nearly as possible plane parallel, is cut in half so as to obtain two

plates of equal thickness; one is slightly inclined to the other and

light passed through them. The course of the rays

which are brought to interference is shown in Fig. 48.

If the plates were parallel, the optical lengths would be

equal. A slight inclination of one causes a relative

change of phase in the overlapping beams, and when
an illuminated surface is viewed through the plates,

coloured bands are seen to traverse the field. The inter-

ference fringes may also be observed in reflected light,

and Fig. 49 shows how we may obtain a number of

different sets of interfering rays according to the number of internal

reflexions. In the first system, marked 1 in the figure, two rays are

brought to interference, the

first having been once re-

flected internally in the plate

A, and the second once in

plate B. The second system
M

consists of three rays, one of

which has been reflectedonce

Fig. 49. in each plate, and the two

others twice in one plate

and not at all in the other. The course of the third system is also

shown in the figure, and the further ones need hardly be considered,

as the intensity of light rapidly diminishes by multiple reflexions.

To prevent confusion, it is necessary to place a screen at SB to limit

the incident beam. If the bands were observed near the plane of the

figure they would be seen to be strongly curved, and the field of view

would only contain bands formed by rays having large retardations.

To find the position of the central band which is that in which the

relative retardation is zero, we start from the fact that the optical

length in each plate depends only on the angle of incidence of the

light. The thickness and refractive index of the two plates being

the same, the optical length is the same for all rays which in

their passage from one plate to another are equally inclined to both

plates. These rays all lie in a plane which is parallel to the line of

intersection of the plates and normal to the plane bisecting the angle

between A and B. The image of that plane in the plate B is the locus

of the central band. In order to observe the fringes near the central
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band it is necessary that the plane containing it should intersect the

plate B, but that at the same time the line of view should not be

obstructed by A. It is easy to see that the conditions are always

difficult and often impossible to fulfil if the plates are vertical and the

observations are carried out as usual in a horizontal plane. A con-

venient arrangement is to tilt the plates slightly round a horizontal

axis. If this inclination is equal and opposite, the central band is

horizontal, and can easily be observed from any position, such as M in

the figure. When one of the plates is then moved round a vertical axis

the bands remain horizontal, hut are shifted upwards or downwards.

43. The Interferometer of Fabry and Perot. Fabry and
Perot have constructed an instrument, capable of rendering important

service, by utilizing the fringes observable in light transmitted through

a plate which in this case consists of a layer of air formed between two
parallel glass plates, the inner surfaces of which are thinly silvered.

We obtain the intensity of the transmitted beam by applying

equation (5)^of Art. 37; the value of /x which now represents the

refractive index of air may be taken as equal to unity. The maximum
intensity of the transmitted light takes place when

2e cos y =mK

This is exactly the same relation as holds in Michelson’s interfero-

meter, with the exception that the maxima and minima are inter-

changed, the inversion of phase at the reflexions being avoided. The
appearance of the rings is however entirely different, in consequence of

the multiply reflexions at the surfaces of the silvered air plates. The
differe^dps an important one, and it tells in favour of the multiple

reflexions. While with single reflexions the intensity gradually varies

according to the sine law from the maxima to the minima and back to

the maxima, multiple reflexions concentrate the light when the reflecting

power is great, almost entirely near the maxima, the intensity falling off

rapidly on either side. As the late Lord Rayleigh has pointed out, the
space between the two reflecting surfaces acts like a resonator. When
the bright rings are narrow, the separation of two radiations having
nearly the same wave-length is assisted, but this narrowing cannot be
pushed beyond a certain point on account of the absorption of light in

the layers of silver through which it has to pass. Hence the deposit of

silver has to be thin, and this diminishes its reflecting power. Never-
theless, considerable advantage is gained.

The interferometer is extremely valuable in the determination of

the ratio of the wave-lengths of the spectroscopic lines, and the method
of procedure will be explained in connexion with the general problem
of the measurement of wave-lengths (Art. 70). For some purposes
Fabry and Perot found it necessary to design their instrument so that

the distance between the two plates was adjustable. This requires very
accurate workmanship if the parallelism is to be maintained during the

adjustment. The construction is easier when the plates are at fixed

distances, and this suffices for most purposes.
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43 A. Lummer plates. We have seen how the multiple reflexions

in thick plates can be made use of to separate two homogeneous
radiations of nearly identical period. In Fabry and Perot’s arrangement

the internal reflexions were strengthened by silvering the surfaces of the

plates. Lummer achieved the same object by utilizing the high reflecting

power near the angle of total internal reflexion. The light enters the

plate AB through a small rectangular prism P cemented to the plate.

The object of this prism is to reduce the loss of light at the entry into

the system. The transmitted rays, T±, T2 ,
Ts ,

if collected by a lens,

combine together in exactly the, same way as in Fabry and Perot’s

interferometer, and the same formula3 hold for their intensity. There is

however an important difference in the reflected beam, in so far as the

first reflexion is eliminated from the system B1 , B2 . In the expression

(4), Art. 37, we have therefore to suppress r and (5) becomes

(1 - Pf
Ir = r - PIt .

1 + r4 - 2

r

2 cos S

The intensity of the reflected wave is therefore proportional, and, if the

coefficient of reflexion be great, nearly equal to the transmitted wave.

44. Stationary vibrations. When two waves dfKhe same
amplitude and period proceed in opposite directions we may represent

the displacement by

a cos (a>£ — nx) + a cos (w£ + nx) - 2a cos nx cos

The right-hand side of the equation shows that the phase is now
constant everywhere, but the amplitude depends on x and is zero

whenever x is an odd multiple of a quarter of a wave-length. The
amplitude has a maximum value in the intermediate places at which x
is a multiple of half a wave-length. The combined disturbance of two
waves crossing each other in this way is called a stationary vibration.

An alteration in the phase of one of the waves shifts the positions

of the maxima and minima, but does not alter their distance. AJtering

e.g. the phase of the wave proceeding in the negative direction, by two
right angles, we should get

a cos (ut - nx) - a cos (W -f- nx) = 2a sin <nt sin nx.

These stationary waves are easily illustrated in the case of sound
waves. Experimental investigation in the case of light involves great

difficulties, which were, however, successfully overcome by 0. Wiener*,
who succeeded in demonstrating the stationary vibrations formed at the

surface of a mirror by stretching a sensitized film, the thickness of

* Wicd. Ann. xl. p. 203 (1890).

s. 6
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which was only a fraction of a wave-length, obliquely across the wave-

system formed close to the mirror.

li A A 1 he a silvered glass plate on which light falls normally and
B Bi a very thin sensitive collodion

film (which of course must be

attached to another glass plate not

^ shown in the figure), the stationary
1 vibrations will have their maxima

Fig. 50 a. at points a, b, c, d, such that their

distances from the plate—neglecting

possible changes of phase at reflexion—are multiples of half a, wave-

length. If a spectrum be projected on the plate such that the image of

the slit is parallel to A A-, each spectrum line is crossed by dark bands

corresponding to the minima of intensity in the stationary vibration.

This is shown in Fig. 6, Plate I, which is a reproduction of one of

Wiener’s photographs. The spectrum—with its violet end to the right

—

is that of the electric arc, and shows mainly two carbon bands, the H
and K calcium lines being faintly seen between these bands. The
inclination of the interference fringes to the spectrum lines in the photo-

graph is due to a slight inclination of the slit. The success of Wiener’s

experiments depended on the formation of photographic films less one-

twentieth of a wave-length thick, and he was able to show that the

method is well adapted to investigate the behaviour of light at reflexion,

such as the reversal of phase when it is reflected at the surface of a

denser medium.

Drude and Nernst having succeeded in obtaining sufficiently thin

fluorescent films, observed the stationary vibrations by their fluorescent

effect.

Lippmann’s Colour Photography is based on the formation of thin

layers of reduced silver deposited within a photographic film, the layers

being half a wave-length apart. They are formed by the- stationary

vibration of waves of light reflected from a surface of mercury over

which the sensitive film has been extended. When viewed in reflected

light the colours of thin plates are seen, and that colour shows a
maximum of intensity which has a wrave-length equal to twice the

distance between the layers. We therefore see chiefly the colour

belonging to the wave which originally had formed the stationary

vibration. The great difficulties which stood in the way of success can
be realized by observing that the nuclei of silver which form the layers

must have linear dimensions not exceeding a small fraction of a wave-
length. It took some years of patient work before a method was found

that proved satisfactory. The first photographs which gave results

imitating roughly the natural colours, were defective owing to the varying

sensibility of the film when exposed to different parts of the spectrum,

but perfect ortho-chromatism was obtained in 1893. The possibility of

reproducing natural colours in the same fashion had ahead}’ occurred to

Wm. Zenker* and to Lord Rayleigh f. The experimental realization due
to Lippmann is, however, a very considerable experimental achievement.

* Lehrbuch dcr Photocliromie. t Collected Works
, Vol. in. p. 13.
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45. Applications. We may divide the principal remaining appli-

cations of interference phenomena into two classes. In the first, a

measurement of the difference in optical length of two paths is aimed
at. Instruments used for this purpose have been called interference

refractometers. Fresnel, already, in conjunction with Arago, made use

of interference bands to measure the difference in the refractive indices

of dry and moist air. Two parallel tubes, filled with the gases to be
examined, were placed in the path of a plane wave-front which traversed

the tubes longitudinally : the displacement in the bands observed when
dry air was replaced by moist air served as a measure of the difference

in refractive index. Jamin carried out important measurements in an
apparatus in which use was made of Brewster’s interference bands. The
tubes containing the gases were placed ip. the paths of the two first of

the rays reflected from the plate A in Fig. 49, and the differences in

optical length showed themselves by a displacement of the bands.

Simpler and more effective methods are now available, and we need not

therefore enter into the details of Jamin’s apparatus. But a useful little

appliance used in the measurements may be described. This is a

“compensator,” consisting of two plates of glass (Fig. 51) capable of

being rotated round a horizontal axis AB,
and placed at such a distance from each other

that each plate receives the light which has
passed through one of the tubes. Rotation
round the horizontal axis alters the thickness

of glass traversed. The alteration being
different for the two plates a measurable retardation of one set of rays,

as compared with the other, is produced. If the central band, having
been displaced by the change of pressure in the tube, is brought back
by the compensator to its original position, the difference in refractive

index between the air under partial exhaustion and the air at atmo-
spheric pressure, can be measured. Different gases may be compared
in a similar manner.

Lord Rayleigh’s* form of Refractometer more nearly approaches the
original instrument of Fresnel and Arago.

Light coming from a fine slit L and rendered parallel by a

„ collimator lens C of 3 cms. aperture
passes through two brass tubes side

by side, and soldered together.

These tubes, 20 cms. long and
6 mm. in bore, are closed at the

Fig. 51.

x... ,,4
Fig. 52.

ends by plates of worked glass, so connected as to obstruct as little as

E
ossible the passage of light immediately over the tubes. The light

aving passed through the tubes enters two slits and is brought to a
focus F by means of a lens. The optical arrangement is practically
identical with that which gives Young’s fringes (Art. 32). The fringes
are observed by means of an eyepiece. To secure better illumination and
sufficient, magnifying power, the eyepiece is cylindrical, so as only to
magnify in a horizontal direction. It is made of a short length of glass
rod, 4 mm. in diameter. There are two systems of bands, one formed by

* Collected Works, Yol. iv. p. 364.

6—2
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light which has traversed the gases within the tubes, the other by light

which passes above them. If different gases are to be compared with
each other, as regards their refracting power, their pressure is adjusted
until the system of bands formed by light which has passed through the

tubes is coincident with the system formed by the light which has
passed above the tubes; the retardation in the two tubes is then the
same. If the experiment be repeated at a different pressure, then the
ratio of the changes of pressure for each gas is the inverse ratio of the
refractivities Qx - 1) of the gases.

Other refractometers have been constructed, chiefly with a view
to separating the path of the interfering rays laterally as much as

possible, so as to leave more room for the tubes or other apparatus to

be introduced into the path of the rays. It is sufficient to refer to

the apparatus of Zehnder*. It should be noticed, however, that the

lateral separation of the rays is by no means always an advantage.

One of the experimental difficulties in delicate optical measurements
consists in keeping the temperature sufficiently constant, or at any
rate, not to introduce a difference in temperature into the two optical

paths. The nearer these are together, the easier will equality of

temperature be secured. Where a separation of rays is necessary or

advisable for other reasons, Michelson’s arrangement, which has already

been described, will probably be found to be the most advantageous.

The applications which Michelson has made with this instrument to the

investigation of the constitution of nearly homogeneous radiation will

be referred to in Arts. 68 and 193.

An appliance, useful in many optical measurements, is the “bi-plate”

which serves either to separate or to bring

together two parallel beams of light. It consists

of two plane parallel plates of glass cemented
together at an angle. Their action is suf-

ficiently illustrated by Fig. 53.

In the applications of the phenomena of

interference which have been dealt with so far,

the problems are of a purely optical nature. We turn now to the second

class of applications in which optical methods are used for linear

measurement.

Fizeau has used Newton’s rings to examine the coefficients of

expansion of certain substances. The body to be examined, cut e.g. into

the form of a cube, is placed on a plate which, by means of screws passing

through it, supports a lens. The upper surface of the cube is polished.

If the lens be adjusted so as to leave a small air space between it and

the cube, Newton’s rings may be observed. If the whole arrangement

is raised in temperature a change takes place in the rings which depends

on the altered distance between the upper surface of the cube and the

lens. Knowing the effect of temperature on the refractive index of air

and the coefficient of dilatation of the other part of the apparatus, that

of the cube may be deduced. Fizeau has measured in this manner the

expansion of crystals in different directions. For a more detailed

Fig. 53.

* Ztsch. /. Imtrumentenkunde
, 1891, p. 275.
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account of the apparatus and method of obtaining the result from the

observed displacements of Newton’s rings, Mascart’s Optics, vol. 1, p. 503,

may be consulted.

Perfectly flat surfaces are sometimes required in optical investi-

gations, and it is a matter of great difficulty to work them so as to

satisfy optical tests. Not the least of the difficulties consists in testing

the surface when it is nearly flat, so as to discover where its faults are

and how they may be corrected. The late Lord Rayleigh* used for this

purpose the bands seen between a horizontal surface of water and the

carefully levelled surface which is to be examined. The latter surface is

supported horizontally at a distance of about one or two millimetres

below that of the water. By the aid of screws the glass surface is

brought into approximate parallelism with the water. When the surface

is perfectly flat, the interference bands are straight, while a curvature

of the bands alwTays implies a curvature of the surface. In the paper
referred to it is shown how to interpret the curvature of the surface by
means of that of the bands. The chief difficulty in applying the method
consists in securing perfect steadiness, so as to avoid the effects of

tremor on the water surface.

45 A. Earth Tides. An important application of interference

phenomena was made by Michelson f in his investigation of the tidal

distortion of the earth’s surface. The optical arrangement is shown

t

diagrammatically in Fig. 53 «.

A A, is a steel tube 6 ins. in

diameter and 100 ft. long,

buried 6 ft. below the surface

of the ground so as to elimi-

nate the effects due to wind
or change of temperature.
The tube is hermetically

sealed at one end and filled

with water which stands at the level LL
X

. The mirror b of the inter-

ferometer is placed just below the surface of the water, the two other

mirrors being in the position indicated by c and a. If the earth’s surface

be distorted by tidal attraction, the distance between the water level

and the mirror b slightly alters and the interference fringes shift. It

was found that the tidal distortion of the earth’s body as a whole pro-

duces a maximum shift between 10 or 20 fringes, which can be measured
to one-tenth of a fringe, giving an average error of less than one per cent.

By a suitable arrangement a continuous record can be obtained. Small
local tremors produce no effect but seismic disturbances can be observed

and measured. “It appears thus that the installation may serve as a

seismograph
;
and it may even be possible to observe a slow secular

change in the apparent level due to an inclination of rock strata the

ultimate rupture of which causes the earthquake];.”

* Collected Works, vol. iv. p. 202.

t Guthrie Lecture, Proc. Phys. Soc. of London, Vol. xxxm. p. 276.

{ loc. cit. p. 280.

Fig. 53 a.
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46. Historical. Christian Huygens (born April 14, 1629, at
Haag in Holland, died June 8, 1695) is the founder of the undulatory
theory of light. His treatise on light appeared in 1690, and contains
the explanation of the reflexion and refraction of light by means of the
principle which now bears his name. He also demonstrated how double
refraction could be explained by means of wave-surfaces having two
sheets, and in particular showed how, in Iceland Spar, a wave-surface
cousistingjffLa sphere and spheroid accounted for the laws of refraction

of both rays.

Sir Isaac Newton (born Jan. 5, 1643, at Grantham in Lincolnshire,

died March 21, 1727) did not favour the wave theory of light. He was
misled by the apparent difference in the behaviour of waves of sound
which, after passing through an opening, spread out in all directions,

and the rays of light which pass in nearly straight lines. This seemed
a formidable difficulty, and Huygens’ attempts at explaining the
apparently rectilinear propagation of light were not clear or convincing.

While there is no doubt that Newton’s great authority kept back the
progress of the undulatory theory for more than a century, this is Snore
than compensated by the fact that the science of Optics owes the
scientific foundation of its experimental investigation in great part to

him. His experiments on the prismatic decomposition of white light do
not fall within the range of this volume, but the phenomena of Newton’s
rings have been referred to. N ewton discovered that the radii of bright or

dark rings were determined by the thickness of the layer of air interposed,

and found the correct law connecting the diameters of successive rings.

Thomas Young, born June 13, 1773, at Milverton (Somerset), studied

medicine in London, Edinburgh and Gottingen. He was Professor of

Physics at the Royal Institution in London between 1801 and 1804, but
gave up Imposition in order to devote himself to the practice of medicine.

He died on May 10, 1829. To Young belongs the merit of having been
the first to state clearly the principle of the superposition of waves and
to show how interference may be explained by means of it. Owing to

the historical importance of this principle, on which the development of

the undulatory theory of light entirely depends, the passage in which
Young first introduced it may be quoted. It occurs in a paper read

before the Royal Society on November 12, 1801, and runs as follows:

“Proposition VIII. When two Undulations, from different

Origins, coincide either perfectly or very nearly in Direction, their

joint effect is a Combination of the Motions belonging to each.”

“Since every particle of the medium is affe'cted by each undu-
lation, wherever the directions coincide, the undulations can proceed

no otherwise, than by uniting their motions, so that the joint motion

may be the sum or difference of the separate motions, accordingly as

similar or dissimilar parts of the undulations are coincident.”

Young’s arrangement for observing interference fringes, which

has been discussed in Art. 32, is thus described in his published

lectures (1807):

“ In order that the effects of two portions of light may be thus

combined, it is necessary that they be derived from the same origin,
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and that they arrive at the same point by different paths, in directions

not much deviating from each other. This deviation may be produced
in one or both of the portions by diffraction, by reflection, by refraction,

or by any of these effects combined
;
but the simplest case appears to

be, when a beam of homogeneous light falls on a screen in which there

are two -very small holes or slits, which may be considered as centres

of divergence, from whence the light is diffracted in every direction.

In this case, when the two
4
newly formed beams are received on a

surface placed so as to intercept them, their light is divided by dark
stripes into portions nearly equal, but becoming wider as the surface

is more remote from the apertures, so as to subtend very nearly equal

angles from the apertures at all distances, and wider also in the same
proportion as the apertures are closer to each other. The middle of

the two portions is always light, and the bright stripes on each side

are at such distances that the light, coming to them from one of the

apertures, must have passed through a longer space than that which
comes from the other, by an interval which is equal to the breadth
of one, two, three, or more of the supposed undulations, while the

intervening dark spaces correspond to a difference of half a supposed
undulation, of one and a half, of two and a half, or more.”

There is no other reference to these experiments in Young’s pub-
lished paper, so that we do not know the size of the apertures, or their

distance apart. Young seems to have attached more importance to the
cases where the openings are wide and the intervening space narrow,

though the theory of these cases is more complicated. Young was very
successful in his explanation of the colour of thin films, especially in

the mechanical analogy which he brought to bear on the change of

phase which takes place at one of the reflexions. The otherwise

formidable difficulty of explaining the dark centre of Newton’s rings

was thus at once satisfactorily overcome.

Fresnel’s important work belongs more particularly to the next
chapter. As regards simple interference and its experimental illus-

tration, we owe him the method of inclined mirrors and of the biprism.

He also showed how fringes could be observed subjectively through an
eyepiece; a method of observation which enabled him to carry out
accurate measurements.

Gabriel Lippmann (1845—1921) combined exceptional independence
of thought with great perseverance and remarkable experimental powers.

He was born in Luxembourg, but his parents soon settled in Paris, where
he spent the remainder of his life. His first important contribution to

Sciencewas the invention of the capillary electrometer, which has attained

a well-established position in physical and physiological laboratories.

His process of colour photography is described in the text, and the
invention of the coelostat, which keeps the image of a finite part of the

sky stationary for a lengthened period, is highly valued by astronomers.



CHAPTER V.

THE DIFFRACTION OF LIGHT.

Fig. 54.

47. Huygens’ principle. By means of Huygens’ principle, we
may obtain the effect of a wave-front WF
at a point P (Fig. 54), by dividing its

surface into a number of elements, and

adding up their effects. Our problem then

consists in finding the law according to

which a small portion of the surface may
be supposed t£> act. If we consider the

element at S to be an independently vibrating source, it is seen that

its effect at P can only depend on the length of the vector SP, the

angle which that vector forms with the normal to the surface, and the

angle between the same vector and the direction of vibration at S. If

the investigation be limited to homogeneous vibrations, we may obtain

in a simple manner an expression for the displacement .at P which

yields, at any rate, one possible solution of the problem.

Draw PO, the normal to the wave-front WF, and call 0 the pole of

P. Draw two circles with the pole as centre

and radii OS and OR. The area of the ring

included between these circles is

7T
(
OS2 - OR2

) = 7T (PS2 - PR?)
= tt(PS-PR) (PS+ PR).

If PS—PR = S, and S is a small quantity, the

square of which can be neglected compared to

PO, the expression for the area of the ring

becomes

2ttSPR.

If the ring be further subdivided into a very large number of con-

centric circles having radii OR1> OR2 ,
such that

PRi -PR =PR2 — PRi = PR3 - PR2 = etc.,

the successive rings have equal areas, and their separate effects at P
must be equal in magnitude. To calculate their joint effect, we must
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take account of the difference in phase of the vibrations reaching P
from each separate ring. If a diagram be drawn in which the effect of

each ring is represented by a vector, these vectors will he of equal

length and will succeed each other at equal angular intervals.

Hence according to Art. 5 the resultant amplitude is a ,

where a is half the difference in phase between the first and last

vibration. The product na represents what would he the amplitude

at P, if every point of the ring were at the same distance from that

point. Writing c for this product, we find that the complete ring

causes a vibration at P, having an amplitude —

—

c. Its phase is the

arithmetic mean between the phases due to the first and last ring. If

PS-PR = X, a = ir and the amplitude at P is zero. If PS—PR = A/2,

the amplitude at P is 2c/tt.

Divide now the whole wave-front into zones, Fig. 56, by rings of

radii OK
^ ,
OK2 such that

5 = PATi -PO =PK2 -PKX=PKZ-PK2 = etc.
£

, The resultant phase of two successive zones

differs according to the above by two right

angles, so that to obtain the total effects, we

need only add up the effects of successive

zones, giving the opposite sign to successive

values.

S-ml
- m2 + m3

where mx
~ 2ci/tt

;
m2 = 2

c

2/?r etc. The quantities cx ,
c2 etc. depend on

the distance between each ring and P, and may also depend on the

angle KPO or the angle between the direction of vibration and KP.
These quantities all alter very little between one ring and the next and

we may therefore take the difference between two successive values of

m to be very small. This being so, a very simple expression for the

sum of the series may be obtained.

Collecting the terms differently, the series may be written in the

form

«-T + (T-- +f) + (T— + ?) + <«•

the last term being hmn or — according as n is odd or even.

Each of the bracketed terms is small if the values of m alter slowly,

but we should not be justified for this reason alone in neglecting

them, because if their number is large, their sum may be comparable

in magnitude to mx . But assuming that the law of vibration is such

that the effect of each zone is smaller than the arithmetic mean of the

Fig. 56.

Hence
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effects of the preceding and following zones, all terms in brackets are

positive, and therefore

„ Wi mno > — ±-^- (2 ),

where the plus or minus sign is chosen according as n is odd or even.

The series S can also be written in the form

„ m2 (m2 m\ ( m6\
2

+
2 )

+ •(3),

and under the same conditions as before, each bracket is positive

If mx is sensibly equal to m% ,
and mn sensibly equal to mn-x , it follows

that

S< mn
2

*

*

Comparing this with (2) it is seen that the bracketed terms are

negligible, and hence

« 0»i . «*»S=^ ±T-
The same conclusion is arrived at by supposing that the brackets in

(1) and (3) are all negative. If a change in the sign of the brackets

occurs in the course of the series, we may divide the series into two

parts, and sum each part separately. We thus arrive again at the

same conclusion that the whole effect is equal to one-half the sum of

the effects of the first and last zones, unless the brackets in the

expression (2) change so frequently in sign that the outstanding small

effect at each reversal sum up to be an appreciable quantity.

Excluding such special cases, which need not be considered in any

optical application, we may now apply our result to the calculation of

the resultant effect of a plane wave-front ex-

tended but ultimately limited by a boundary

which is not a circle having the pole as centre.

In Fig. 57 the boundary is assumed to be

square. We may draw all the circles com-

plete until one of them touches the boundary.

After that point is reached, parts of the zones

are blocked out by the opaque screen, and the

effect of these outer zones must gradually

diminish and ultimately vanish. In this case, therefore, the effect of

the last zone is zero, and we find that the resultant effect at P is equal

in magnitude to half that of the first zone. Writing p for OP, the

area of the central disc has been shown to be rrpX.. To obtain its

effect we must apply the factor 2jv and we thus find that it causes an
amplitude at P which is the same as that produced by a surface of
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area 2p\, placed half-way between the centre and edge of the disc.

If ks is the effect at P of a small surface s placed at 0, the effect of

the first zone is 2kpX, and the effect of the whole wave, as has been

shown, is equal to that of half the first zone. The wave being plane,

the amplitude at P is the same as at 0. Calling that amplitude

a, kp\ = a, and hence

We must conclude that if a wave-front is split up into a number of

small elements, we arrive at a correct result in the case of an extended

plane wave of amplitude a, if we take the effect at a point P of a

small surface s as regards amplitude to be asjpX. The surface s is here

supposed to be so small that the distances of its various points from

P do not differ by more than a small fraction of the wave-length. The
occurrence of p in the denominator can readily be understood, as the

effect of an independent source on a point at a distance may be

expected to be such that the intensity varies inversely as the square of

the distance. If this be granted, it also follows that A must occur in

the denominator, as the factor of a must be of the dimensions of a

number, and of the three quantities s, p, A involving the unit of length

s occurs in the numerator and p in the denominator.

It may now be shown that the value of k just obtained also

gives correct results, when the wave-front

is spherical. In Fig. 58 let waves diverge

from a point Q and let it be required to

calculate the effect at P from one of the

wave-fronts WF. The only difference there

can be between this problem and the pre-

vious one lies in the magnitude of the first

zone, which must therefore be recalculated.

Let BH be drawn at right angles to PQ and let QO — q ;
PO —p

;

BH=f; HO = t.

Then neglecting powers of / higher than /a

f2 = 2qt,

also /2 = PP2 -P/P
= (Pli + PH) (.PB - PH),

and PB =p +
A

2
*

'
*) 2p-

XP<1

p + q'
Eliminating t.
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The effect of the first zone as regards amplitude is equal to 2ksjrr,

where s is the surface of the zone. Substituting s = -n-f
2 and k = ajp\

where a is the amplitude at 0, the amplitude at P which is half the

effect of the first zone is found to be aqj(p + q) and varies therefore, as

it should do, inversely as the distance from Q.

Returning to the case of plane waves we obtain another important

result by considering the phase of the resultant vibration. The phase

at P due to the action of any zone has been shown above to be

half way between the phases due to portions of the zone which

are respectively nearest to and furthest from P. Applying this to

the central zone, the phase of the resultant vibration at P, if calculated

in the usual way, should differ from that at 0 by

But we know that the optical distance from 0 to P is simply p,
and hence the difference in phase is 27iy?/A. It follows that if we want

to obtain the phase correctly at P by means of Huygens’ principle,

we must everywhere subtract a quarter of a wave-length from the

optical distance, or imagine the wave-front to be shifted forward

through that distance.

It may be well to recapitulate what it is that has been proved. An
extended wave-front has been divided into zones, and grouped together

in such a way that the effect of the whole wave could be shown to be

equal to that of half the central zone which lies close to the pole 0.

The effect of a small surface a at a distant point P was expressed

by ks, and it appeared that k was independent of the angle between

the radius vector and the normal to the wave-front. But this only

proves that at the central disc, the cosine of that angle being sensibly

equal to unity, any effect of the inclination is eliminated. Similarly

the result is independent of any possible effect of the direction of

vibration.

The division of the wave-front into zones, drawn so that the distance

of their successive edges from the point at which the amplitude of light

is to be estimated, increases by half a wave-length, has rendered it

possible to apply Huygens’ principle in a simple and effective way.

This mode of treating the propagation of waves being due to Fresnel,

the zones should be called “ Fresnel Zones.”

48- Laminar zones. Instead of dividing the wave-front into

circular zones, it is often more convenient to perform the division in a

different manner. Let P (Fig. 59) be the point at which the light is

to be estimated and WF the wave-front. Divide WF into a number
of parallel strips at right angles to a central line HK. Let LM be
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such a strip, which may again be subdivided into smaller areas, chosen

to be of such magnitudes that the resultant phases of two successive

elementary areas are in opposite directions. If the strip be indefinitely

extended in both directions, we may form a

series as in the previous article, and find in

this way that the total effect must be some

definite fraction of that element ofLMwhich

is nearest to the central line HK. The whole

effect being proportional to the width of the

strip t, we may put it equal to kht, where k is

the factor previously determined, and h some

linear quantity. This expression asserts nothing more than that the

effect of the strip is equal to that of an area situated in the central

line HK, having a width t and a height h. The same reasoning may

be applied to each of the strips which are parallel to LM, and we

finally reduce the effect of the wave-front to that of a horizontal strip

of width h. This may once more be subdivided. As the strip of

width t produces an effect at P equal to kht, the effect of a strip

of width h must be kh\ Hence the effect of the complete wave-front

is reduced to that of an area A2 placed at 0, 0 being the pole of P.

If the amplitude is a, kP = a. Hence

1
=^

p being the distance OP
;
the effect as regards amplitude of a strip

such as LM of width t is therefore tajJpX.

To obtain the resultant phase due to each strip, we make use of the

previously established fact that in applying Huygens’ principle, we
obtain the optical distance by taking away a quarter of a wave-length

from the actual distance between the source and the point at which

the amplitude is required. We imagine therefore the whole wave-

front to be brought nearer through that distance. Now the process

of attaining the final resultant from the rectangular strips consists of

two exactly equal steps, the first in obtaining the intermediate resultant

of each vertical strip such as LM, and the second in summing up for

the horizontal strip HK which represents that intermediate resultant.

If the total effect of the two steps as regards phase, is to bring back

the wave-front to its proper position, each step must contribute equally,

md therefore the optical distance of each strip is obtained by taking

*way A/8 from the actual distance. When the wave-front is divided

,.ito strips, it follows therefore that for the calculation of phases, we
must imagine each strip to be brought nearer by A/8. Or for simplicity

of calculation we may say that we may take the optical distance of

a strip to be equal to its actual distance, if we correct the final result
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by subtracting A/8 from the calculated optical distance or 45° from the

calculated phase.

We may now determine the widths, t, of the strips, so that their

w P
resultant effects at some given point

are alternately in opposite directions.

Let Q be the point and OTx , TiT2 ,

T2T2 ,
etc. (Fig. 60) represent the

widths. The total resultant effect

of all the vertical strips has been

shown to correspond to an optical

distance of p + ^ if OQ =p, and if
O

the resultant phases of successive

strips are in opposite directions, the resultant optical distance of the

wth strip must be
: p + — ^

A.

The phase at Q of the vibration due to any one strip Tn Tn + i which

is not near to 0 may be taken to be that belonging to the optical

distance which is equal to the arithmetical mean of QTn and QTn+ x .

This may be seen by subdividing each strip into minor equal strips

and assuming that the distances of successive subdivisions increase

uniformly. This assumption is justified with greater and greater rigour

the greater the angle between QTn and QO

;

the error which is introduced

in the strips which lie near 0 is found to be small and even for the

second strip, 7\ Ta , it may here be neglected. To obtain the right value

for the resultant phase of each strip after the first, we must now put

QTj=p + $\,
QT2 =p + i A,

=P+ V- ^ etc.

Note that the distance QTi has been derived from the consideration

of the second strip and that we have not assumed that the phase of

the effect of the first strip OM corresponds to the arithmetical mean
of the distance of its edges. This would not have been correct

because the distance between Q and the line OG passes through a

minimum at 0, and if the first strip were subdivided, we could not

assume as we did for the other strips that the distances of the sub-

divisions increase uniformly. As regards phase we know however that

for 0

T

x it must be that corresponding to the optical distance p + ^A,

because, by our construction, the phase of the disturbance due to each

strip must be alternately in agreement with and in opposition to that

of the resultant vibration, that of the first strip being in agreement.

To show the accuracy reached by the above simple reasoning I give

the results of a more complete calculation of the distance QTX and Ql\

for which the error is greatest,
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W =/> + !*- ’0046 A,

QT% =p + |-A + '0016 A.

This number shows that for practical purposes the error introduced by

the simplification we have made is negligible.

The width of successive strips is obtained from

where A2 is neglected compared to pK Hence for the first strip

ix = ^VpA
for the second strip t% = jVpA {Jl — *73},

and generally tn - OTn— OTn- x

= ^Jp\{>J&n — 1 — *7l?z — 5}.

The effect of the wth strip is, as regards amplitude :

1r VpA 7r

*74w — 5}.

The numerical values of the effects are given in Table III. for n-2
to n — 12. They have been calculated from the above expression,

except for the first strip, for which the method fails to give correct

results. The effect of this strip may be obtained by calculating

the numerical value to which the series approaches, leaving out the

first strip.

Remembering that the effect of the second strip is negative the

series to be summed up is

:

- tr- 1 [(V7 - J3) - (VIT - n/7) + (Vis - \/n) ].

Its value is found to be — '1725. As we know that the total effect of

all the strips on one side of 0 must be *5, it follows that the effect of

the first strip as regards amplitude must be *6725.

Table III.

Effects in Amplitude of Fresnel Strips.

No. of

stiip

Effect in

amplitude
No. of strip

Effect in

amplitude

1 + •6725 2 - -2908

3 •2135 4 •1771

5 •1547 6 •1391

7 •1274 8 •1183

9 •1109 10 •1047

11 •0995 12 •0949
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49. Preliminary discussion of problems in diffraction

When an obstacle is placed in the path of a wave-front and the shadov

of the obstacle received on a screen, the boundary of the shadow is not

sharp, but the light encroaches to some extent on the dark portions,

while there are bright and dark fringes on the side towards the light.

If we draw straight lines which proceeding from the source of light

touch the shadow-throwing body, the intersections of these lines with

the screen enclose what may be called the geometrical shadow, meaning

thereby the shadow constructed according to the laws of geometrical

optics. Owing to the fact that light consists of waves, the laws of

geometrical optics are not strictly true, but the waves spread round

the obstacle and encroach to some extent on the geometrical shadow.

That they do not do so to a greater extent, was the principal difficulty

of the wave theory in its earlier form. This bending round of the

waves has been called the “Diffraction” of light. The simplest

problems of Diffraction are those in which we imagine a plane or

spherical wave to impinge on a plane perforated screen. Whatever
form or position the apertures HK, H'K'
(Fig. 61) have, we can find the disturb-

p ance at a point P by Huygens’ principle,

if we know the disturbance at all points

of the openings. In the usual solutions

Fig. 61. of the problems, the assumption is made
that the disturbance is the same at all points in the plane of the screen

as it would be if the screen were away. In other words, the screen

simply obstructs the light which falls on its opaque portions, but does

not otherwise alter the motion of the medium. That the assumption

is one which needs justification may be understood by contemplating

e.g. the flow of water through a pipe, in which the stream lines are

parallel straight lines, and imagining that at some place a diaphragm

is introduced across the pipe, leaving only an aperture much narrower

than its cross section. We should here obviously arrive at erroneous

results if we were to assume that the velocity of the water at all points

of the opening has not been altered by the introduction of the diaphragm.

In the case of the ordinary diffraction effects, it is found that the

results arrived at by the simplified calculation are in agreement with

experiment. This is a consequence of the small size of the length of

a wave of light as compared with the other linear magnitudes which

enter into the calculation, the errors introduced being sensible only

within a few wave-lengths of the obstacle.

We are allowed therefore to use Huygens’ principle in its simph

form, provided we correctly introduce the contribution which eacl

small surface element s at a point S of the opening contributes to tb

amplitude at P. If r be the distance PS, <f>
the angle between r ai.
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t..ie perpendicular to the wave-front at 8, and 6 the angle between r and
the direction of vibration, the effect for homogeneous vibration of a

small surface s at P is according to Stokes:

s (1 + cos 4>) sin 9

2rX

This expression is based on the assumption that the displacements in

the openings are everywhere the same as if the screen were away.

Lord Rayleigh, on the other hand, has shown that if the forces acting

across the plane of the screen are the same as if the screen were absent,

the effect of s would be

ssin0

Xr ’

and has also pointed out that so far as the treatment of diffraction

problems is concerned, the terms depending on 6 and 4> disappear in

consequence of interference, so that we may with equal justice adopt

the simpler expression arrived at in the previous article, and take the

effect of an element at 8 to be according to convenience either s/Xr,

or s/Xp, where p is the shortest distance from P to the wave-front.

50. Babinet’s principle. Two screens may be called com-
plementary when the openings of one correspond exactly to the opaque

portions of the other and vice versa. If b be the amplitude at P
in the absence of any screen, and a1} a2 are vectors representing the

vibration at P when either one or the other of two complementary

screens is interposed, then the sum of the vectors a2 and a2 is obviously

equal to b.

The principle due to Babinet allows us, whenever we have calculated

the effect of one screen, to obtain that of the complementary screen

without further trouble. A little care is necessary in using the

principle, to take correct account of the difference in phase. But one

simple result may at once be deduced from it. If ax is zero, a2 must

be equal to b. Hence at every point where there is no light with

one of the screens, the intensity when the complementary screen is

introduced, is equal to that observed when the light is unobstructed.

This statement cannot however be reversed. If a2 = b, ax may have

any value between zero and 2

«

2 . This is made obvious by the diagram

(Fig. 62) in which OA represents the amplitude (5)

'N. B of the unobstructed light; OB the equal amplitude

( (aa) observed when one of the screens is introduced.

BA is then that vector which together with OB has

s'v [/ OA as resultant. If the point traces out the circle

1 „„ of radius a2 ,
the vector BA changes in magnitude

F,g- 62
- from sero to 2a,.

s. 7
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51. Shadows of a straight edge in parallel light. Let a

plane wave-front WF (Fig. 63) fall upon a screen ME having a

straight vertical edge passing through E, the plane of the drawing

being horizontal, and let it be required to find the distribution of light

on a distant and parallel screen 88'. Draw the wave-front which

passes through E, and divide up that portion EG of the wave-front

which is not blocked out by the screen, into suitable zones
; EP being

the normal to the wave-front P lies on

the edge of the geometrical shadow.

At P the active wave-front EG re-

presents one of two exactly symmetrical

halves of the complete wave-front, which

would operate if the screen were away.

Hence the introduction of the screen

reduces the amplitude at the geometrical

shadow to one half and the intensity to

one quarter. To find the amplitude at

some point Q inside the geometrical shadow, construct Fresnel zones

such that

^
= TlQ-EQ = T2Q-TtQ=nQ-TzQ =

Unless Q is close to P
,
the resultant vibration due to the different

zones will be alternately in opposite directions, and calling the effects

of successive zones mu m2 ,
etc. the total effect is

mx - + ms — m4

In this case the values of m diminish too quickly to allow us to

write down the sum as \mx . It will however be some fraction of mlt

and as with increasing distances of Q from P, each of the zones

diminishes in width, the effect at Q is the smaller the further that

point lies inside the geometrical shadow. The intensity which as has

been shown is only '25 that of the incident light at the edge of the

geometrical shadow, rapidly diminishes still further towards the inside

of the shadow and soon becomes inappreciable.

If the point Q lies outside the geometrical shadow the intensities

are obtained by drawing the normal to the wave-front, and the

Fresnel zones, according to Art. 47.

The total effect in amplitude of that portion of the wave-front

which lies to the right of the pole, when the shadow-throwing edge is

on the left, is equal to ’5, and the effect of the portion included between

the pole and the edge is a maximum or a minimum, according as an

odd or even number of zones are included between 0 and E (Fig. 60).

The first maximum takes place when Q is at such a distance from P
that OF— OTx . If the amplitude of the incident light is unity, and
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the effects of successive zones are mu m2i etc. the first maximum has

an amplitude *5 + m1> half the amplitude of the incident light being

added to represent that complete part of the wave which lies to the

right of 0. When Q has a position such that OE— 0T2 ,
there is

a minimum with an amplitude *5 + m1 - m2 , The next maximum has

a value ’5 + — m2 + mz ,
and though the maxima and minima rapidly

approach each other in magnitude the intensity continues to oscillate

about its mean value as the point Q is moved away from the geometrical

shadow. The distances (w) of the maxima and minima from the edge

are obtained from

a?=QE> -p* = ^2zlp\.

The equation shows that the loci of the maxima and minima are

parabolas.

Table IV.

Shadow of straight edge.

Distance of screen =100, \=5xl0~s
,
amplitude of incident light =1.

Intensities

No.

Distance
from edge
in cms.

Outside
geometrical
shadow

Inside
geometrical
shadow

m *J(4n - 1)/2

1 •061 1-3748 •0298 1-217 1-225

2 •094 •7774 •0140 1-873 1-871

3 •117 1-1995 •0091 2-345 2-345

4 •137 •8429 •0067 2-739 2-739

5 •154 1-1509 •0053 3-082 3-082

6 •170 •8718 •0044 3-391 3-391

7 •184 1-1259 •0037 3-674 3-674

8 •197 •8891 •0033 3-937 3-937

9 •209 1-1103 •0029 4-183 4-183

10 •221 •9006 •0026 4-416 4-416

11 232 1-0993 •0024 4-637 4-637

12 •242 •9092 •0022 4-848 4-848

13 •252 1-0910 •0020 5-050 5-050

The angle x]p being proportional to s/k/p is a small quantity unless

n is large. But for large values of n the introduction of the screen

causes no appreciable change in the distribution of light. Hence the

effect of the screen is confined to the neighbourhood of its geometrical

shadow. Table IV. gives the intensities of light at the first seven

7—2
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maxima and six minima outside the geometrical shadow, and the

intensities inside at the same distances from the edge. To give an idea

of the scale, the positions to which the intensities refer are given for

the case in which the shadow is received on a screen one metre away
from the linear edge of the shadow-throwing object and the wave-length

of light is 5 x 10_5
cms. The meaning of the last two columns will be

explained in Art. 52.

The table shows that at a distance of 2 '5 mm. from the edge of

the geometrical shadow the light inside the shadow has only an
intensity equal to the 500th part of that of the incident light, but
that outside the shadow, at the same distance, the maximum and
minimum intensities still differ by about 20% »

while the interval

between the bright and dark bands is T mm. The light must of

course be homogeneous if it is desired to see more than a few of the

bands. The distribution of the intensity of light in the neighbourhood

of a straight edge is plotted in Fig. 64 from the numbers given

by Fresnel. The dotted vertical line represents the edge of the
geometrical shadow where the intensity is one quarter. The distance

of the screen from the edge is one metre and the scale of abscissae

represents millimetres.

52. Shadow of a straight edge in divergent light. If L
(Fig. 65) represents the source of light, which
we suppose to be a luminous line parallel

to the edge E which throws the shadow, we
may for simplicity take the beam to have a
cylindrical wave-front with the luminous source
as axis. The traces of the wave-front with the
plane of the paper are circles. Drawing EG,
the wave-front, passing through the edge, we
may divide it into laminar Fresnel zones, OTlt

TiT2 ,
etc. which satisfy the condition that the
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resultants of successive zones have opposite phases at Q. ’file^ifetagpeg

of the edges of the laminae must be the same as in the pre™^totidie, ei

so that

QTn — QO +
4w- 1

8
A.

The condition for the position of the maxima and minima is that

a complete number of zones is exposed between 0 and E so that

QE— QO -

If we put PQ = x
;
LE- LO = q,

4« - 1

8
K

QE— Vj
x*

p, + ai
t =p + — app.

QO=LQ-q=p+^Tj)
app.

Hence the positions of the maxima and minima of light are determined

by

which gives

:

j a?q _ 4n - 1 .

^P (P + <?)
~

8
*

x = \ Jp\ (4n — 1){p + q)lq-

Fresnel in his celebrated Memoir on Diffraction obtained the

expression

x = m Jp>< (p + q)/2q,

where m is a numerical factor which he calculated by means of the

definite integrals which bear his name.

To make our result agree with his, we must put

m = n/(4w — f)/2.

By means of his formula Fresnel obtained an excellent agreement

between the observed and calculated positions of the maxima and

minima, but the simple method which we have followed gives results

which are sufficient for all practical purposes. To show that this is

the case, the numerical values of the factor m calculated by Fresnel’s

method and ours respectively are entered into the two last columns of

Table IV. All numbers except the first and second are identical, and

even the difference in the position of the first band could hardly be

detected by experiment.

As LQ - QE is a constant for a given value of n, it follows that the

loci of a maxima and minima are hyperbolas having L and E as foci.

The width and hence the effect of each zone may easily be obtained

and hence the intensities of the maxima and minima calculated, if

desired.
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53.

M

Shadow of a narrow lamina. If a cylindrical wave-front

WF (Fig. 66) falls on a vertical lamina of which

AB represents the horizontal section, and throws

a shadow on a screen MN, it is convenient to

consider separately the portion of the screen

HK which lies within the geometrical shadow

and the two other portions which are respec-

tively to the left and right of it. Unless AB
is very small, that portion of the wave which

passes to the right of B does not affect very

considerably the distribution of light to the left

of H, and the distribution of light outside the

MQ,

Fig. 66.

geometrical shadow is therefore approximately that observed outside

the shadow of a straight edge bordering a screen of unlimited extent.

To obtain the distribution of light at a point Q inside the geometrical

shadow, construct the wave-front passing through A and B and divide

it into Fresnel zones. The resultant of the effects of all the zones

to the right of B will agree in phase with that due to the first zone, and

similarly for the light to the left of A the resultant phase must agree

with that of the effect of the first zone. There is a maximum or

minimum of light at Q according as the phases resulting from the

strips BTX and AB1 act in conjunction or in opposition. Unless Q is

very near H or K the first zones may be drawn so that QTX — QB = -

\ jy

and QR1 — QA = ~. In that case the first zones act in conjunction or
At

in opposition according as A Q - BQ is an even or odd multiple of half

a wave-length. The positions of the maxima or minima are therefore

the same as if two dependent sources of light were placed at A and B.

The space HK is filled in consequence by equidistant bright and dark

fringes, but except near the centre of the geometrical shadow the

resultant amplitudes of the two portions of the active wave-front are

not the same and there is therefore never complete darkness. Near

H and K the bands cease to be equidistant and gradually fuse into

the ordinary fringes seen outside the shadow. When the lamina is

replaced by a thin wire or fibre, the distance between the internal

fringes increases, and the position of the external fringes is no longer

correctly calculated by considering only one portion of the wave-front.

As the width of the obstacle is reduced, the fringes become less

distinct and must disappear when the width is only a fraction of a

wave-length, for in that case the obstruction is so small that the

portions of the wave-front- to the right and left of the obstacle cause

an amplitude which must be practically identical with that of the

unobstructed wave. Plate I. Fig. 5 reproduces a photograph of the

shadow of a wire and shows the central bright line.
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54. Passage of plane waves through a slit. If a plane wave
s a s s' passes through a slit, placed parallel to the

J
'/r/JJ

/

front of a wave, it is easy to obtain an

///J/
K' expression for the distribution of light on

//// a distant screen which is parallel to the

first. The edges of the slit being supposed
lg ' 67,

vertical, let /S/S", Fig. 67 and 68, be the

intersection of the screen with a horizontal plane and subdivide the

slit AB into a large number of vertical strips of equal width. The
illumination at a point P is equal to the sum of the effects of the

separate strips. If MM' be at a sufficient distance, all parts of the

s A b s’
produce equal effects as regards mag-

~ryL/ nitude, and the phase difference of the

/ /K different rays is the same at the screen as

\ / on the arc of a circle AK drawn with P
W as centre. For a distant screen this arc

L—J , may be taken to be coincident with the

6g
line AK drawn at right angles to the

direction of the rays (Fig. 67). The
phases of the rays proceeding from the centres of successive strips at

the points where the rays cross the line AK are in arithmetic pro-

gression, and hence if the diagram of vibrations for the point P is

constructed, we may apply the results of Art. 5, so that if 2a be the

phase difference between the vibrations due to the first and last ray,

• • • ^ sm a
the resultant vibration has an amplitude—~— where A is the ampli-

tude at the centre of the pattern. To determine a, we require the

phase difference corresponding to the optical distance BK
,
which

if e be the width of the slit and 0 the angle between the direction of

the rays considered and the normal to the original wave-front is

:

Fig. 68.

a = - <? sin 6.

The illumination at MM' is periodic, the amplitude being zero

whenever a is a multiple of tt, i.e. when e sin 6 is a multiple of A.

To study the distribution of light more particularly, we must in-

/sin ci\^

vestigate the different values which the function ( ——

)

takes for

different values of a. Its zero values lie at equidistant intervals n.

The position of its maxima are found in the usual way from the

condition

which gives a = tan a.
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Draw the graph of tana as in Fig. 69. The intersections of a

straight line drawn at an angle of 45° to the coordinate axes, with

the graph, determine the points

for which tan a = a. The figure

shows that the points of inter-

section lie on successive branches

of the graph and after the first

lie near the positions for which

a is an odd multiple of a right

angle. The first eight values of

a for which sin a/a is a maximum
are as follows

:

ai
— 0,

02= 1‘43 7T,

03 = 2*46 7T,

a4 = 3'47 7r,

a5 = 4*48 7r,

a6 = 5*48 7T,

a7 = 6*48 tt,

a8
: 7*49 7r.

The curve of amplitudes

A =A 0 sin a[a

is drawn in Fig. 70 (dotted line). More important is the intensity

curve /= 70 (sin
2 a)jo? shown in the same figure. Its coordinates,

Fig. 70.

when 70 is equal to one, are given in the third column of Table V.

It appears that the bulk of the light is confined to values of a which
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lie between + w, the intensity of the second maximum being less

than of the intensity of that in the central direction. For the

first minimum (a = it) :

sin 6 — \je.

If e is equal to a wave-length, the light spreads out in all directions

from the slit, with an intensity which is steadily diminishing as the

inclination to the normal increases, hut there are no other maxima of

light beyond the central one. The equations must in that case be

considered as approximate only, as is shown by the fact that the

total intensity of light transmitted through the screen would according

to the equations be less than the intensity of the light incident on the

slit.

Table V.

a sin a/a (sin2 a) /a2 a sin a
/
a (sin2 a) / a

2

0° +1-0000 1-0000
o

owCN -0-2122 0-04503

15 + 0-9886 0-9774 285 -0-1942 0-03771

30 + 0-9549 09119 300 -0-1654 0-02736

45 +0-9003 0-8105 315 -0-1286 0-01654

60 +0-8270 0-6839 330 -0-0868 0-00754

75 +0-7379 0-5445 345 -0-0430 0-00185

90 +0-6366 0-4053 360 . o-oooo 0-00000

105 +0-5271 0-2778 375 +0-0395 0-00156

120 +0-4135 0-1710 390 +0-0735 0-00540

135 +0-3001 0-0901 405 +0-1000 o-oiooi

150 + 0-1910 0-0365 420 + 0-1181 0-01396

165 +0-0899 0-0081 435 + 0-1272 0-01619

180 o-oooo o-oooo 450 +0-1273 0-01621

195 -0-0760 0-00578 465 +0-1190 0-01416

210 - 0-1364 0-01861 480 + 0-1034 0-01069

225
i

- 0-1801 0-03242 495 + 0-0818 0-00670

240 -0-2067 0-04274 610 +0-0562 0-00315

255 -0-2170 0-04710 525 +0-0282 0-00080

540 o-oooo o-ooooo

For values of e smaller than A., the equations must Cb fortiori not

be taken as giving more than an approximate representation of the

facts, which may be wide of the truth if e is a small fraction of the

wave-length.

When e is large compared with the wave-length, the whole light is

confined to directions for which 6 is very small. This explains the

apparent discrepancy between the behaviour of sound and light, which

retarded so long the general adoption of the undulatory theory of
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light. The amount of the spreading of waves which have passed

through an opening depends entirely on the relation between the

wave-length and the opening. If sound-waves, having a length

measured in feet, pass through an opening, the linear dimensions of

which are of about the same magnitude, the waves expand in all

directions, but if light-waves pass through the same openings, the

spreading is practically nil, owing to the fact that the length of the

waves is now very minute in comparison with the opening, and hence

there is destruction* of light by interference in oblique directions.

To make experiments of sound and light waves comparable with

each other, the openings should be made proportional to the lengths

of the waves.

55. Passage of light through slit. General ease. In the

previous article it has been assumed that the screen receiving the

light is at a great distance. We may now consider the more general

case in which the screen is nearer and the incident light divergent.

If Fig. 71 represents a horizontal section, L being the linear source

and AB the aperture, we may find the ampli-

tude at a point Q of the screen MM' by dividing

the wave-front between A and B into appro-

priate zones. Consider first the light at the

central point P. If 0 be the central point of

the wave-front between A and B and the screen

be at such a distance thatPA—PO ~ (4n — 1) A/8

each half OA and OB of the wave-front contains

an even or odd number of zones according as n
is even or odd. Hence there is a maximum or

minimum of light at P according as n is odd or even. As the screen

is brought nearer, the observed system of fringes will alternately

have a bright or dark centre at P. If p and q be the distances

of P and L from the plane of the aperture, and d half the aperture

of AB,
PO =p + q— \V + d2

<P

PA = Jp1 + d2

dI

2

PA-PO = f {-+-}
2 lp q)

1 l_ 4rc-l A

p
+
q 4 d?

Jj
i

jvt

Fig. 71.

M 1

and therefore
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determines the distance p of the screen from the opening, the central

fringe being bright when n is odd and dark when n is even. When
the point Q is not included in the geometrical beam of light which is

bounded by the straight lines LB and LA, a similar reasoning loads

to the conclusion that there is the centre of a bright or dark fringe at

Q according as AQ-BQ is an odd or even multiple of half a wave-

length.

56. Passage of light through a circular aperture. When
the perforations in a screen are such that we can divide the screen

into circular zones, the calculation of the intensities is very simple for

points in the axis of the zones.

Let 0 (Fig. 72) be the centre of a small circular aperture in a

screen, and OP a line at right angles to the screen which we shall

call the axis. If it is required to determine the

amplitude at P due to a wave-front of unit

amplitude incident on the screen, which we
shall consider in the first instance to be plane

and parallel to it, we may divide the aperture

into Fresnel’s zones, which produce effects which are equal in

magnitude but alternately opposite in direction. If the radius OB
of the aperture is such that an even number of zones is included, the

amplitude at P is zero
;

if an uneven number is included the ampli-

tude is a maximum and equal to that due to the first zone, and

therefore double that of the unobstructed wave. The introduction of

the screen with small aperture doubles the amplitude therefore at

certain points. The condition for maximum or minimum of light is

if PO=p, OR-r,
nk f—z ; r2y= vp9 +

= 2p
app.

where there is a maximum if n be odd and a minimum if n be even.

The general expression for the amplitude on the axis is found by

subdividing the aperture into a large number of small zones of equal

areas. Their total effect, according to Art. 5, is (

A

sin a)/« where for a

we must put half the difference in phase at P of the disturbances due

respectively to the first and last zone, i.e. half the difference in phase

corresponding to an optical length \ nk. This gives

:

ir nk tit
2

a
A' 2 2pk’

A is the amplitude at P calculated on the supposition that the

disturbances of all zones reach P in the same phase, which would

according to Art. 46 be irr^jpk, i.e. the area of the aperture divided

by pk.

Fig. 72.
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The amplitude at P is therefore 2 sin (
irr

2
/2p\). The points of

zero illumination which have already been determined are the nearer

together the smaller the distance of P. Sideways from the axis, the

amplitudes cannot be calculated by simple methods, but general con-

siderations similar to those which lead to accurate results in the

case of long rectangular openings, are sufficient to show that there

must be rhythmical alternations in the illumination. Hence a screen

placed across the axis will show bright and dark rings having at P a

bright or dark centre according to the distance ofP from the opening.

The case of a divergent beam of light presents no further difficulty.

We may subdivide the spherical wave-front into zones of equal area

and obtain again at P the amplitude ^ Sm a

a

Fig. 73.

with the difference that a =^ (^- + -^-Y
A. \2p VqJ

q being the distance of L from the screen.

A has the same value as before. Hence the

points of maximum and minimum illumination

are determined by

1 1

P q

nX

TV

Xx

and the amplitude at the maximum is 2q/(p + q).

57. Shadow of a circular disc. OB (Fig. 74) being a circular

s < disc, a spherical wave-front diverging

from L
,
a luminous point on the axis

of the disc, will throw a shadow on a

screen SJS', the centre of the shadow

being on the axis. If Fresnel zones

are drawn on the wave-front, the total

FlS- 74, effect at P as regards amplitude may
be determined as in Art. 46 to be the same as that due to half the

first zone, and if the disc is small, the first zone surrounding the edge

of the disc has the same area as the central zone at 0, which is

covered by the disc. Hence the illumination at P is the same as

if the disc were away. Round this central bright spot there are

alternately dark and bright rings. It will be an interesting exercise

for the student to deduce the constancy of illumination on the axis

of a shadow-throwing disc from Babinet’s principle, making use of

the amplitude at the bright and dark centres of the complementary

circular aperture. The fact that the shadow of a circular disc has

a bright spot at its centre was discovered experimentally in the early

part of the 18th century, but had been forgotten again when about 100

years later Poisson deduced it as a consequence of the wave-theory of
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light. Arago, who was unaware of the earlier experiment, tested

Poisson’s mathematical conclusion, and verified it.

58. Zone plates. On a plane screen draw with 0 as centre,

circles which divide the Fresnel zones with respect to a point P on Ihe

normal OP, the wave-front being supposed to be plane. For the radii

jf the circle we have the relation.

r2 = npa\
where p0 is the distance OP, and where n takes the values 1, 2, 3 etc.

for successive circles. Imagine the zones on the screen to be alternately

opaque and transparent. Then if a wave-front proceeding in the

direction PO falls on the screen, the phases due to all transparent

zones are in agreement at P, and hence the amplitude at P will be

\Nm where m represents the effect of the first zone and N the total

number of zones.

The amplitude at P will therefore be N times what it would be

if the screen were away. Such a zone plate acts like a lens concen-

trating parallel light to a focus, the focal distance being p0 . If now
the source of light is moved to a point q from the screen, the zones

will again unite their effects at P provided (Art. 56)

11 nk

p q r*

• l+i-l
• • ^ — •

P q Po

The relation between object and image is therefore the same as for

a lens.

Zone plates may be made by drawing circles on a sheet of paper,

the radii of which are as the square roots of successive numbers,

and painting the alternate zones in black. When a photograph on

glass is taken of such -a drawing, a plate is produced which satisfies the

conditions of a zone plate. To prepare an effective zone plate involves

great labour. Prof. It. W. Wood has published a reduced print of such

a plate* from which other still more reduced copies may be prepared

by photographic reproduction. Prof. Wood! has also described a

photographic method by means of which zone plates may be made,

which give for alternate zones a complete phase reversal. A more

perfect imitation of a lens may thus be obtained.

59. Historical. Augustin Jean Fresnel was born on May 10th,

1788, in Normandy, and entered the Government service as an

engineer. He was occupied with the construction of roads, but lost

, his position owing to his having joined a body of men who opposed

* Phil. Mag. xlv. p. 511. 1898. t Ibidem .
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Napoleon’s re-entry into France, after his escape from Elba. He-

instated after Waterloo, he remained some time living in a small

village in Normandy where his first study of the phenomena of

diffraction seems to have been made. Fresnel was always of weak
health and died on July 14, 1827. The undulatory theory of Optics

owes to Fresnel more than to any other single man. His earlier work

on Interference had to a great extent been anticipated by Thomas
Young, but he is undoubtedly the discoverer of the true explanation

of Diffraction. Young had tried to explain the external fringes

of a shadow by means of interference of the rays which passed

near the shadow-throwing object and those that were reflected from

its surface. Fresnel, starting with the same idea, soon found that it

was wrong, and proved by conclusive experiments that the surface

reflexion had nothing to do with the appearance of the fringes.

He then showed by mathematical calculation that the limitation of

the beam, by the shadow-throwing object, was alone sufficient to cause

the rhythmic variations of intensity outside the shadow.



CHAPTER VI.

MEASUREMENT OF WAVE-LENGTHS.

Fig. 75.

60. General theory of a grating. A grating is a surface

having a periodical structure which impresses a periodical alteration

of phase or intensity on a transmitted or reflected wave of light.

The most common method of manufacturing a grating is to rule

equidistant lines with a diamond point on a surface of glass or metal.

The diamond introduces a periodical structure,

each portion of which is probably very irregular,

but which is repeated at perfectly regular

intervals, Fig. 75. If the grating is ruled on

a plane surface, that surface is called the plane

of the grating. Any plane passing through

corresponding points of the grooves such as

A 2 ,
A 3 ,

is parallel to the plane of the

grating. We distinguish between “reflexion

gratings” and “transmission gratings” according as they are ruled on

an opaque surface, the reflected or scattered light being used, or

a transparent plate, through which the light is transmitted.

Let a plane wave-front be incident parallel to the grating. Waves
spread out from the different portions of the grooves which may be

considered as centres of secondary disturbances. If the light be

received on a distant screen, the resultant of all vibrations at each

point may be determined. Consider that point of the screen which lies

in a direction A 2C2 from the grating, and draw a plane HK at right

angles to that direction. As the optical distance from any point on

HK to the corresponding point of the distant screen is the same,

the phase differences between individual secondary rays in any one

direction are the same at the screen as they are at HK. Also we may
treat the rays which are ultimately brought together as having equal

amplitudes, the small differences in the distances from different parts of

the grating to the screen being negligible. We combine in the first



112 rHE THEORY OF OPTICS [CHAP. VI

place, those vibrations which are due to the secondary waves coming

from one of the grooves. Selecting any point on the groove A 2 ,
we may

always express the phase of the resultant vibration due to the whole

groove as that corresponding to an optical distance A 2G2 —e, where

e is some length which depends on the shape of the groove and

on the direction of A 2C2 . The resultant amplitude similarly may
be written ka, where a is the amplitude of the incident light and

k a factor depending also on the shape of the grooves and the

direction. Taking the resultant of the other grooves, we should

find similarly that the resultant phases at HK may be derived

from the optical distance A X GX - c, A 3GZ -*, etc., A x ,
A 2 ,

A s ,
being

corresponding points on the grating. The theory of the grating

depends on the fact that the values of e and k are the same
for each groove. This involves the similarity of all the grooves,

and if that similarity holds, the difference in phases between the

resultant vibrations of two successive grooves is (A 2 C2 -e) — (A 1 Ci — e)

and is therefore independent of e. We may now draw a plane through

any set of corresponding points of the groove and call it the plane

of the grating (Fig. 76), and in calculating

the resultant phases at HK we need only

consider the difference in the optical

distance A XGU A 2C2 ,
A ZG2 If that

difference is a multiple of a wave-length,

the phases at HK are identical and we
must then obviously have a maximum of

light, wherever those identical phases are

brought together. This may either be the

distant screen or the principal focus of a lens placed with its axis at

right angles to HK. The direction in which these maxima appear is

easily obtained. If 6 be the angle between the normal to the grating

and the direction A XGX and A XN be drawn at right angles to A XGX :

A 2N
A xA 2

nX

e
( 1 ),

where e is the distance A XA 2 between the grooves ruled on the grating,

A. the wave-length and n an integer number. The number of maxima

is finite because sin 0 cannot be greater than one, and the highest

value which we can take is therefore that integer which is nearest but

smaller than e/X. If e were smaller than X there could be no maximum
except that for which n = 0. The amplitudes in the direction of the

maxima are Nka, where N is the total number of grooves and k the

constant already introduced, which may and does very seriously affect

the amplitude. It is theoretically possible that k is zero for one of the

directions defined by (1) and in that case that maximum would of
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course be absent. It is also possible that k is unity, and in that case

the whole of the light would be concentrated at or near that maximum.

The complete investigation of the grating includes the determina-

tion of the amplitudes of light in directions not necessarily confined to

those at which the maxima appear. We proceed, therefore, to find the

distribution of light in the neighbourhood of the maxima. The wave-

length of a homogeneous beam incident on the grating being A and

having, as has been shown, a maximum in such directions that (Fig. 76)

A 2N— ?i\ let the whole system of rays A
, Gx ,

A 2 (72 etc. and with it

the normal plane HK be turned round slightly so that A 2N now
becomes nX, where A' is a length differing little from A. The differ-

ence in phase between the vibrations at C2 and Gx for the wave-length

A becomes 2

7

mA'/A 0r 2mi (A' — A)/A, as we may add or subtract any

multiple of four right angles to a phase difference. This is also the

phase difference between the vibrations at C3 and C2 , etc. To obtain

the complete resultant, we can therefore apply the proposition of

Art. 5, which gives for the amplitude of N vibrations of equal

amplitude ka, and constant phase difference 2a/2V, a resultant

amplitude

r/ sin a
JS ka .

a

In the present case, a = miN (A' - A)/A.

The distribution of intensity corresponding to this amplitude has

been discussed in Art. 53. Fig. 70 shows for different values of a,

the amplitude (sina)/a (dotted curve) and the intensity (sin
2 a)/a2 (full

curve). The intensity has secondary maxima which are not, however,

important compared w7ith the principal one, at which a = 0.

The amount of light is everywhere small when a is greater than 27t;

hence if Nn is large, the light is concentrated nearly in those directions

for which (A' - A)/A is very small. It is owing to the rapid falling off of

the light from both sides of the principal maxima, that the grating can

be made use of to separate the different components of white light, and

to produce quasi-homogeneous vibrations.

The condition for the first minimum a = tt, leads to

A'/(A-Ar
)
= nN. (2).

It will be shown in Chapter vn. that a spectroscope resolves a

double line, the components of which have wave-lengths A and A',

when the maximum of the diffraction image of one line coincides with

the first minimum of the other. The greater the value of Nn the

smaller is the difference A — A' which may be resolved. We may there-

fore take nN to be a measure of the resolving power.

s. 8
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The incident wave-front has so far been taken as parallel to the

plane of the grating. For oblique incidence, consider a grating formed

by ruling lines on a glass surface, and let a plane wave be transmitted

obliquely through it. Let A 1} A 2 (Fig. 77) be

corresponding points on successive grooves, and

LM the incident wave-front, inclined at an

angle </> to the plane of the grating. Draw
two rays LA X ,

MA 2 ,
and consider the light

diffracted in the direction A lC1 ,
inclined at an

angle 6 to the normal of the grating. Draw
AiN and A 2T at right angles to AjC-i and A XL

respectively. The difference in phase between and (72 is then

e (sin </> - sin 0),

and there is a maximum when

e (sin <f>
~ sin 9) = ± nX (3).

6 and 4> are here taken as having the same sign when they are both on

opposite sides of the normal.

Writing y for the angle between the incident and diffracted

beams, the condition for a minimum or maximum of deviation is ^=0,
’ dd

which leads to dcj> = dd. By differentiating (3) we obtain

cos 4>d<j> — cos ddd = 0.

If d<f> = dd it follows that cos = cos 0, i.e. $ = ± 9. <f> and 6 cannot be

equal unless n- 0, which case need not be considered. For the con-

dition of maximum-minimum we have therefore $ = — 9, which shows

that the incident and diffracted light form equal angles with the plane

of the grating. Further consideration shows that it is a minimum and

not a maximum deviation that is involved.

If
<f>
= - 0 the deviation is 20. Equation (3) becomes in that case

2e sin^ = 2e sin 9 = 7i\.
A

61. Overlapping of spectra. The maxima of light for normal

incidence have been shown to take place when e sin 6 = nX. For each

value of n, the maxima of the different wave-lengths take place along

different directions, and hence the grating “analyses ” the light falling

on it and produces quasi-homogeneous light. It acts in this respect like

a prism, but splits up the light into a number of spectra, each value of

n giving a separate spectrum. For n = 0 , there is a maximum, but there

is no spectrum because the position of the maximum is independent of
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the wave-length. The direction, of this maximum is the direction of

the incident light in a transmission grating, while in a grating which

acts by reflexion it is the direction in which the incident beam would

be reflected from a polished surface coincident with the grating. For

n= 1, we have the so-called spectrum of the first order, which spreads

over the quadrant between 6 = 0 for A = 0 and 6 = for A = e.

Similarly the spectrum of the second order, for which n = 2, spreads

over the same quadrant, the limits of wave-length being A = 0 for 6 = 0,

and A = e/2 for 6 = \w. For each value of 6 we have therefore an

infinite number of overlapping maxima corresponding to all wave-

lengths which are submultiples of e sin 6. If we confine ourselves to

eye-observations, we need only consider the wave-lengths lying between

4 x 10~ 5 and 8 x !0~5
. The limits 6' and 6 of the spectra of different

orders are then with normal incidence

for n = 1 ;
4 x 10-5 = e sin 6' and 8 x 10~ 5 = e sin 6,

for n = 2
; 8 x 10

-5 = e sin 6' and 16 x 10~ 5 = e sin 6,

for n = 3 ;
12 x 10

-5 = e sin 6' and 24 x 10~ B = e sin 6
,

for n = 4 ;
16 x 10

-5
== e sin 6' and 32 x 10~ 5 = e sin 6.

40 36 32 28 24 20 16 12 B 4

Fi«r. 78.

In Fig. 78 the extension of the different spectra is marked by

straight lines lying above each other

to avoid actual overlapping. The
wave-lengths marked are those cor-

responding to the first order spectrum

;

the wave-lengths belonging to the

spectrum of order n are obtained by

dividing these numbers by n.

The visible spectrum of the first

order stands out clear of the rest;

but the second and third overlap to a great extent, the range between
A = 6 x 10" 5 and A = 8 x 10-B of the second order being coincident with

the range of A = 4 x 10-6 to A = 5*3 x 10-5 of the third order. The
spectra of higher orders spreading over greater ranges of 6 overlap

more and more, and special devices have to be adopted to separate

the spectra, when observations are made in the higher orders. When
spectra are to be recorded by photography, there is a similar over-

lapping but its range is different.

62. Dispersion of gratings. The maxima of two wave-lengths

Aj and Aa being in such positions that

e sin 61 = wA,,

e sin 02 = «Ao,

the ratio (6± — 02)/(Aj — A2) may be taken to measure the angular

dispersion of the grating. The ratio increases with increasing values

of wA and hence the dispersion increases with the order of the spectrum.

8—2
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If the incident beam is oblique

e (sin 9 — sin <£) = n\,

which, by differentiation, gives with a constant value of </>

e cos OdO = nd\

d6
so that the angular dispersion is ^ = nje cos 9,

For a given order the dispersion is therefore inversely proportional

to cos 9 and involves and X only in so far as 9 depends on these

quantities.

When the diffracted beam leaves the grating nearly normally, cos 9

varies very slowly. In that case the dispersion is proportional to the

order of the spectrum and independent of the wave-length, i.e. equal

angular separation means equal differences of wave-length. We then

say that the spectrum formed is “ normal.”

63. Resolving power of gratings. The use of a grating as

an analyser of light depends on its power to form a pure spectrum.

To obtain a measure of the purity of a spectrum, we may imagine it

to he projected on a screen, which has a narrow opening parallel to

the original slit intended to transmit only that wave-length which has

a maximum coinciding in position with the opening. It is then found

that the waves passing through even an indefinitely narrow aperture are

not absolutely homogeneous. In Fig. 79 the curve a represents the

distribution of light on the screen for a given wave-length. OK
indicates the position of a narrow opening placed so as to transmit the

maximum amount of light having a given wave-length X, the amount
so transmitted being proportional to the intensity OK and to the width

of the opening. If Xa be a wave-length near X, it will have its maximum
a little to one side. Its intensity curve is represented by the second

curve and an amount of its light proportional to OH passes through

the opening. The curves of intensity having no definite limit, there is

some light of every wave-length passing through the slit, but the in-

tensity quickly diminishes and we need only consider those wave-lengths

which are not very different from X. If we wish to compare different

spectrum-forming instruments with each other, it will be sufficient to
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limit the investigation to that light which lies between the two minima
on either side of the maximum.

It follows from Art. 60 that a wave-length X1 has its first minimum
where there is maximum for A if nN (A

1 -A)/A=+l. Hence we may say

that the range of wave-lengths passing through the opening extend

from a wave-length A ^1 + to a wave-length A ^1 - The

quantity Nn has been called the resolving power of the grating.

Denoting it by R, we may say that very little light passes through the

slit which differs in wave-length from A by more than AjR. Resolving

power will be further considered in Chapter vii.

64. Action of grating on impulses. In the discussion of the

grating its action on homogeneous vibrations have so far been made the

starting point, but a clearer view is obtained by imagining the

disturbance to be confined to an impulsive velocity spread equally over

a plane wave-front. Such an impulse, as we have already seen,

represents white light, and by treating such light as an impulse we gain

the advantage of having to consider a single entity in place of an

infinite number of overlapping waves of infinite extent. We shall also

be led to an instructive representation of homogeneous light based on

white light. Without wishing to give to one of these views the

preference over the other, we must emphasize the justification of both,

believing that a clear idea of the phenomena of light can only be

obtained by a proper recognition of the duality of the relationship

between white and homogeneous light.

In Fig. 76, Art. 60, let the incident light consist of a single

impulse spread over a plane wave-front which is parallel to the

grating. The impulsive motion will reach the points Cu C2 ,
C3 ,

at

regular intervals. If therefore a lens be placed in such a position

that a wave-front HK would be brought together at its principal

focus, a succession of impulses would pass that focus at regular

intervals of time, the result being a periodic disturbance.

There will be as many impulses as there are lines on the grating and

the interval between them is equal to the time which the disturbance

takes to travel through the distance e sin 0. The whole theory of

the grating is contained in this statement. It would be easy to show

that the overlapping of spectra, and the partial homogeneity which

becomes more and more perfect as the number of lines on the grating

is increased, are all implied in the finite succession of impulses and it

might be instructive to do so, but there is no necessity for it. The
sole object of Physics is to explain what we can observe, and we should

turn our attention therefore to the physical phenomena which the

light after reflexion from a grating exhibits. For this purpose the

impulse serves at least as well as the homogeneous radiation. We
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should enquire therefore what are the effects of such a finite succession

of impulses on our eye, on a photographic plate or an absorbing medium.

In each of these cases resonance plays the predominant part, and

our problem resolves itself therefore into finding the resonance effects

which may be caused by a succession of impulses and to compaie them

—

if we wish—with those of homogeneous vibrations.

The analogy of sound may help us. If a blast of air be directed

against a rotating disc perforated at regular intervals like the disc of

a siren, a musical sound is heard
;
or to make the analogy with the

grating more complete, imagine a sharp noise of very short duration

to be reflected from a railing, when the reflected impulses returning at

regular intervals may produce the effect of a musical note. In order to

examine the resonance effects which a succession of impulses is capable

of producing, we take the case of a pendulum set into a motion by a

blow succeeded by others at regular intervals. If t is the period of the

pendulum, t that of the interval between the blows assumed to be

slightly greater than r, the second blow will be delivered when the

pendulum has just passed the position of equilibrium and will have

practically the same effect in increasing the momentum as the first

;

the same is the case for the succeeding blows which will all increase

the swing of the pendulum until the accumulated difference in period

is such that the forward blows are delivered when the pendulum swings

backwards.

The difference between r and r therefore becomes serious when
N (t — r) = % r, N being the number of blows delivered. If the

difference between t and r is less than that indicated by the equation,

we should be unable to distinguish between the time interval of the

blows and the period of the pendulum, and if we were to investigate

the succession N of impulses by some resonance method, we should be

driven to the conclusion that it contained all periodicities between the

limits tK-y in almost equal proportion. Outside these limits

there is still some resonance but with diminishing effect. It is seen

that the greater the number N the more nearly can we identify the

disturbance with a homogeneous vibration. In the case of sound the

matter may perhaps be put somewhat clearer by superposing the

succession of impulses on a periodic homogeneous vibration and
examining the “beats” produced. If Nr - (N± 1) r the note has

been alternately increased and weakened, and the ear would, by the

alteration in intensity, clearly perceive that it is dealing with disturb-

ances of different periods. But if Nr lies anywhere between the

limits (iV'+^T, there will be little variation in intensity and the ear

could not form any definite conclusion as to any difference between r

and r. We should conclude that the sound examined contained all
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the periods included within the narrower limits given in about equal

proportion, but that in agreement with previous results, it is only when

Nt lies outside (N± 1) t that we can altogether neglect the periodicity.

The quasi-homogeneous effect of a succession of impulses and its

approach to homogeneity as their number increases is thus explained.

There is a peculiarity of the periodicity produced by the succession

of impulses inasmuch as it is impossible to distinguish between the

periodicity t and the periodicity ^r, t Tj or — n which are all equally
72

contained in it. A consideration of the resonance effect shows that

the succession of blows has the same effect whether the pendulum in

the meantime has performed one, two, or n complete oscillations.

This explains the overlapping spectra in a grating. We have used the

effects of resonance to pick out the periods contained in a succession

of impulses such as is formed by a grating, but the mathematician will

not find it difficult to apply Fourier’s analysis and to express directly

the impulses in a series proceeding by sines and cosines. He may
thus easily convince himself that our representation of the effects of

the grating is in all respects identical whether the white light is

decomposed into homogeneous vibrations at its source or after it

emerges from the grating.

65. Talbot’s bands. If, while the spectrum formed by a prism

or grating is observed, half the pupil of the eye be covered with a

thin plate of mica or glass, the spectrum is seen to be traversed by
dark bands, provided the plate is inserted on that side on which the

blue of the spectrum appears. These bands were first observed by
Fox Talbot. Instead of viewing the spectrum directly we may use a

telescope, the plate being inserted on the side of the thin edge of the

prism forming the spectrum, so as to cover a portion of the aperture

of the object glass.

Similar bands were observed by Baden Powell, who used a hollow
glass prism with its refracting edge downwards and filled with some
highly refractive liquid, into which he inserted a plate of glass from
above so that its plane approximately bisected the angle of the prism.

The plate was only pushed half way down the liquid, so as to leave its

lower parts clear. Interference bands then appeared, but only when the

refractive index of the liquid was greater than that of the glass. Stokes

subsequently showed that when the refractive index of the glass was
the greater of the two, the bands could still be observed; only in this

case it was necessary to place the plate in the thinner end of the prism,

leaving the thicker part clear.

A simple explanation of these bands is sometimes based on the
consideration that the two portions of the light, which, in the

absence of the interposed plate, would reach the retina in the same
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phase, are retarded relatively to each other by the plate, so that

interference may take place. This reasoning is obviously wrong, for it

does not explain the manner in which the effects depend on the relative

refractive index of the liquid and the inserted plate.

A more complete explanation taking account of this asymme-
try has been given by Airy and Stokes, and involves an elaborate

mathematical process. A very simple treatment may be given if,

instead of basing the calculation on Fourier’s analysis, we consider the

source of the light to emit a succession of impulsive velocities. In

Fig. 76 (Art. 60) we may consider the wave-front to consist of a simple

impulse which reaches the grating so that the points A 2 ,
A3 ,

etc.

are simultaneously disturbed. At the plane HK
,
the disturbance will

reach the points Gi, C2 ,
Cs ,

in succession, and if a lens be placed with

its axis at right angles to HK, a disturbance will pass the focus of

the lens at regular intervals of time, as already explained.

The question now is : How can the impulses which succeed each

other at the focus of the lens be made to interfere with each other ?

Clearly only by retarding those w.,ich reach the focus first or by

accelerating those which reach it last. A plate of appropriate thickness

introduced on the left-hand side of the figure as it is drawn could be

made to answer the purpose. If, on the contrary, the same plate be

introduced on the right-hand side, it would only retard those impulses

which already arrive late, and therefore no interference could take place.

If the retardation be such that the retarded impulses fall just half-way

between the original impulses, interference is complete because the

primary periodicity is destroyed. There is however an increased

amplitude of the half period -and its submultiples. We find therefore

a destruction of the spectra of odd orders and an increased illumination

in the spectra of even orders.

There is one thickness of the plate for which the bands are seen

most sharply. This is clearly the thickness which gives a retardation

such that there is most complete overlapping, and hence we see that the

retardation must be such that the retarded impulse coming from the

first line of the grating, and the unretarded impulse coming from the

central line, arrive together. This means that the retardation is JiVX,

if N is the total number of lines in the grating the plate must be

pushed sufficiently far into the beam to affect half its width. The
wave-length A. here means the wave-length of that homogeneous train

of waves which has its first principal maximum at the focus of the lens.

If the retardation has more than twice its most effective value,

the series of impulses from the first half of the grating pass through

the focus later than those coming from the second half, and hence

interference ceases.

If at a certain point of the spectrum corresponding to a wave-
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length X there is a maximum of light, the relative retardation of the

two interfering impulses must be equal to m\ m being an integer
;
the

next adjoining band towards the violet will appear at a wave-length X'

such that mX = (m + 1) X'.

Hence for the distance between the bands

X-X' 1

X ~ m’
with the best thickness of interposed plate, m = \N, and hence

(X— X')/X' = 2/iV where X' in the denominator may with sufficient

accuracy be replaced by X.

If a linear homogeneous source of light of wave-length X be

examined by means of a grating, the central image extends to a wave-

length Xj such that
X-X2 _ 1

X ~ N'
where N, as before, is the total number of lines on the grating.

Hence the following proposition :—If, in observing Talbot’s bands,

the best thickness of retarding plate be chosen, the distance between each

maximum and the nearest minimum is equal to the distance between

the central maximum and the first minimum of the diffractive image

of homogeneous light, observed in the same region of the spectrum

with the same optical arrangement.

If we use prisms instead of a grating, the number of lines N must

be replaced by the quantity which corresponds to it as regards resolving

power, viz., tdfi/dX where t is the aggregate effective thickness of the

prisms. It follows that the retardation which gives the best inter-

ference bands with prisms is ^Xtd^jdX*.

66. Wire gratings. In certain cases, the intensity of the

spectra of different orders may be calculated. If the grating is

formed by a number of equidistant thin wires of

equal thickness (Fig. 80), the periodicity of the

grating is such that one portion does not obstruct

ojaojdaqojo the passage of the light whilst the other is opaque.

1/ j//// Take the incident light to be normal to the grating,

UhLl / an(l let the widths of each transparent and opaque
/ / portion be a and b respectively

;
the amplitude of

Fig. 80. the light diffracted at an angle 0 to the normal is

then (Art. 54) (A sina)/a where a = va sin 0/X.

The maximum of the nth order is determined by

(a + b) sin 0 — rik
;
so that a = vanI(a, + b).

The amplitudes at the maxima are therefore

A (a + b) . mra— sm T .

7rna a + o

* Phil. Mag. Vol. vii. p. 1 (1904).
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For the central image, in which there is no dispersion, a = 0 and the

amplitude is A. The law of falling off in the intensities at the sides

of the maximum in each diffraction image is the same for all maxima,

so that for the ratio of the intensities of the images, we may substitute

the ratio of the squares of the amplitudes at the maxima. For the

calculation of the amplitude at the central maximum, it is sufficient to

point out that the interposition of the grating reduces the amplitude

in the ratio of its transparent portion to its total surface, i.e. in

the ratio a/(a + b ), and hence the intensity of the central image is

{a/(a + b)Y, if the intensity of the incident light is unity. This deter-

mines the value of A.

We now obtain for the intensities of the other images,

mra

a + b,

If a = b, the sine factor is zero for all even values of n, so that the

spectra of even order disappear, and the intensities of the spectra

of odd orders are, in terms of the incident light, —, ; .

7r 0 7i ?l"7T

The fraction 1 /tt
2 represents the maximum intensity which the

spectrum of the first order can possibly have in this class of gratings,

and shows what a considerable amount of light is lost when a grating is

used as an analyser of light. If we desire to make the second order

spectrum as intense as possible, we must make ajb equal to 1/3 or 3,

but even in this case, we should only secure little more than two

per cent, of the light.

It is instructive to note that the grating reduces the intensity

of the total light transmitted in the ratio af(a + b), which is also the

ratio in which the amplitude of the central image is reduced. The
difference between a/(a + b) and {a/(a + b)Y gives the amount of light

which goes to form the spectra of higher orders.

67. Gratings with predominant spectra. Rulings of gratings

may be devised which concentrate most of the light into one spectrum.

Fig. 81 represents the section of such a grating ruled on a reflecting

surface. If the oblique portions

of the grating lie so that light

incident in the direction of the

arrow would, by the laws of

geometrical optics, be reflected

in the direction A XGX then all

the rays from each of the

oblique portions would be in

equal phase at a distant screen

HK, placed at right angles to

A XGX . If, further, the difference
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in optical length at HK between A 2G2 and A XGX be a wave-length,

there is coincidence of phase between the rays from successive rulings.

Hence the amplitude on the screen or at the focus of a lens collecting

the parallel rays is the same as if the whole wave-front were reflected

in the ordinary way. The resultant amplitude is therefore less than

the resultant amplitude of the incident wave, only on account of the

contraction in the width of the beam due to obliquity. If 6 be the

angle between A XGX and the incident beam, it would follow that the

intensity of the first order spectrum is cos2 6 if that of the incident light

be unity. This loss of light is accounted for by the light reflected from

the other sfet of inclined faces. If the ruling is such that the first order

spectrum is at an angle of 30° from the normal, three-quarters of the

whole light would go to form that spectrum. For normal incidence we
have as before, sin 6 = A,/e, and the reflecting facets must be inclined at

an angle d/2. The condition for maximum light can only be fulfilled for

one wave-length at a time, but a slight tilting of the grating supplies

the means of adjustment for any desired wave-length. Transmission

gratings may be ruled on the same principle, the

condition being that the angles of the inclined

facets are such that the incident rays in each

little prism formed are refracted along paths at

right angles to HK, and that there is a retarda-

tion of a wave-length between two corresponding

rays A 2G2 and A XCX . Mr T. Thorp has been able

to demonstrate the practical possibility of manu-
facturing gratings of the kind considered. Tri-

angular grooves were cut in a metallic surface, and a layer of liquefied

celluloid was allowed to float and solidify over this grooved surface.

On removal, the celluloid film showed in transmitted light spectra

which were all very weak except that of the first order on one

side. HK (Fig. 82) gives the direction of the wave-front of the

diffracted wave which carries the maximum intensity for the wave-

length A.

68. Echelon gratings. If a reflecting grating were constructed

on a principle similar to that of the last

article, but subject to the additional con-

dition that rays which go to form a particular

spectrum return along the path of the incident

light, the spectrum formed by reflexion would

contain the whole intensity of the incident

light. This consideration leads to Michelson’s

echelon grating. In Fig. 83 let a number
of plates, Tx , T2 , T3 ,

etc. be placed so that

the different portions of a wave-front WF are reflected back parallel

w. 1* 1* 1
*

1
* '

'

1
*

Fig. 82 .
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to themselves from each of the plates, then if the depths of the steps

A iCi, A 2C2 ,
A zOa ,

are all equal to n\, a multiple of a wave-length,

the reflected beam has intensity equal to the incident beam, neglecting

the loss of light at reflexion. For that particular wave-length, there

cannot therefore be light in any other direction. The reasoning holds

for all those wave-lengths for which the step is an exact multiple of

a wave-length, and we may, if n is great, have a great number of

maxima of light all overlapping in the same direction.

At a surface HK inclined to WF at a small angle 0, the retardation

of successive corresponding rays is eO, where e is the width of each

step. Hence there is coincidence of phase for a wave-length A' at

corresponding points of HK if

n{A-A') = e0.

For the dispersion 0/(A - A') we thus obtain life. But only a very

small part of each spectrum is visible because the intensity of light

falls off very rapidly to both sides of the normal direction.

At a wave-front parallel to WF, the relative retardation of two

waves A and A', for the light reflected by the last element, is Nn (A - A')

if there is coincidence of phase for light reflected at the first element.

Hence equation (2) holds, and the resolving power is Nn, as with

ordinary gratings.

A reflecting grating of the kind described would be difficult to

construct, but excellent results have been obtained by Michelson with

a transmission grating based on the same principle.

A number of equal plates of thickness t are arranged as in Fig. 84.

Each part of the beam is regarded by

more or less than its neighbour. For normal

transmission, there is equality of phase

everywhere on WF if

(in — 1) t = nK
If for the wave-length A', having refractive

index /A the diffracted wave-front is parallel

to HK, the phase at H and K must be the

Fig. 84. same, or

(^-l)t + LK^n\',

and if e be the distance between corresponding points Au A 2 , the

angle 0 through which the front is turned is LKje or:

6 = {wA' — (// — 1) t}/e

= {n (A' - A) - (p! - ft) t}/e.

The angular dispersion is therefore

(4)-



68] MEASUREMENT OF WAVE-LENGTHS 125

If AT be the total number of plates, the first minimum of the dif-

fractive image of X' coincides with the maximum of X, if the total

retardation NeO is equal to X. Hence multiplying both sides of (4)

by Ne, we find :

X

X'-X (5 ),

dp
where ^ has been substituted for (//- yu.)/(X' - X), as only very small

variations of fi and X come into play.

Substituting rik = (/* — 1) t, the ratio of the second term on the

right-hand side of (5) to the first is — 1), and this for flint

glass, and in the centre of the visible spectrum varies between about

-‘05 and — *1. We may therefore say that the value of X/(X'~ X) for

this form of grating is from 5 to 10 per cent, greater than Nn, but

approximately the resolving power is the same as for the wth order of

an ordinary grating having a total number N of grooves. Full inten-

sity is only obtained for those wave-lengths for which t = nk. But a

slight tilting of the grating increases the effective thickness t, and

brings any desired wave-length into the best position. The total light

is, however, in any case, confined to the immediate neighbourhood of

the direction of the incident light, because the width of each element

is large compared with a wave-length. It is worth while to discuss this

a little more closely. The angular distance between the principal

maximum and the first minimum with an aperture e is according to

Art. 63, k/e. We may therefore, disregarding the light which is

beyond the first minimum, say that the spectra have appreciable

brightness only to a distance k/e on the two sides of the normal.

Consider now that the maximum of the wth order of X' coincides with

the maximum of the (n + w)th order of X when nk' = (n + m) X. If in

(4) we neglect the second term on the right-hand side and for 0

substitute 2k/e which measures the total angular space within which

the light has an appreciable intensity we find 2X = (X' — k)n or

X' = (w + 2)X, which by comparison shows that m — 2. No order

except n, n + 1 and n + 2 can therefore be visible. In the case con-

sidered the orders n and n + 2 would just coincide in position with the

places of zero illumination and the central image would contain all the

light. As a rule there will be two spectra. As regards intensity of

light, the echelon form gets rid of one of the chief difficulties in

the use of gratings, as the light must be concentrated almost entirely

into two spectra, and we may adjust the grating so that the intensity

is practically confined to one spectrum only.

The overlapping of spectra of different orders is, however, a serious

inconvenience, for it must be remembered that although for each wave-
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length there are only two orders visible, the number of the order is

different for the different wave-lengths, and the total number of over-

lapping orders is very great. As an example, consider normal incidence

on a grating having its plates of thickness '5 cm. For a wave-length

A = 5 x 10
-5

,
the thickness is 10,000 times the wave-length, so that we

should observe a spectrum of the 10,000th order. Coincident with it,

and for a slightly differing wave-length, we should have the spectra

of orders which are near that number. Thus wA = ‘5 is satisfied for

n = 8,000, if A = 6*25 x 10
-6

. There are therefore 2000 coincident

maxima within the range of wave-lengths 5 x 10_B and 6'25 x 10-B
,
the

former lying in the green and the latter in the orange.

These overlapping spectra must be separated or got rid of. This is

done by means of an ordinary spectroscope, which can be used in two

ways. In the form of the apparatus as it is most commonly con-

structed, the light is §ent through a train of prisms before it falls on

the slit of the echelon collimator. The resolving power of the prisms

should be sufficient to exclude all light belonging to the maxima which

it is desired to exclude. We may also use a train of prisms to separate

the maxima after they have passed through the echelon, and this arrange-

ment, which would seem to possess some advantages, was apparently

used by Michelson in his first experiments.

69. Concave gratings. That certain gratings possessed a

focussing power had been noticed by a number of observers, and the

explanation of the fact presents no difficulties, but what previously

had always been considered a defect to be avoided, became in the mind
of Rowland an object to be desired, and by very perfect mechanical

contrivances was made use of to advance spectroscopic research.

It is always possible to construct theoretically the ruling of gratings

on surfaces of any shape, such that an image of a spectrum at any
desired point shall be formed.

Let A (Fig. 85) represent a

Fig. 85.

point source of light, and let it be
desired to form an image of the

spectrum of the first order so that

all the light of wave-length A shall

be concentrated at B. With A
and B as foci, draw ellipsoids such

that if P, P', P" be points on
successive ellipsoids,

AP +PB —

AP' + P'B = (m + l)A;

A P" + P"B = (m + 1) A, etc.

Let GG' be the trace of the surface which it is desired to convert into a
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grating. The grating intersects these ellipsoids in curves which divide

it into Fresnel zones. The light which might reach B from successive

zones is in opposition and no luminous disturbance can therefore exist

at that point. But if some change he made in the zones, so that the

amount of light scattered by alternate zones is either obliterated or at

any rate weakened, the plate will act like a zone plate and light will

be focussed at B. Ruling lines with diamond point parallel to the

lines of division between the zones and at distances equal to the

distance between alternate zones, is sufficient to produce the desired

effect. As the construction of the zones depends on the wave-length,

the spectrum formed has a focus at B for a particular wave-length

only. But the adjoining wave-lengths are concentrated into other

foci in the neighbourhood. If we desire to produce spectra of

higher orders, we may draw the zones so that the sum of the

distances of any point from A and B is mX, (m + n) X, (m + 2n) X, etc.

If a portion of the space filled by each zone so formed is cut by a

diamond, so that the corresponding portions of all zones are modified

in like manner, a source of light at A produces a spectrum of the wth

order at B.

In practice, we are confined to rulings in straight lines on plane or

spherical surfaces. We are also unable to rule the lines accurately

except by means of a screw turned step by step through equal angles.

It is Rowland’s discovery that gratings with very small aberrations can

be made by ruling lines on a spherical surface by means of a screw.

In Fig. 86 let A represent a source of light, and B the point at which

it is desired to form a spectrum of the wth

order. We confine the investigation to rays

lying in the plane containing AB and the

normal OG of a curved grating GG', C being

the centre of curvature. Take OG as axis of

X

\

and the tangent to the grating at 0 as

axis of Y.

Put OA =r, BO = r1} AP = u, BP = v.
8

If P lies on the edge of the mth. zone, and

if the wth order spectrum is in focus at B,

u + v = r + r1 ± mrik.

Fig. 86.

If the distance between successive rulings is such that it's projection

on 0Y is constant and equal to e, y = me, hence eliminating m,

u + v = (r + /*i) ±
7~-

(6).

If this condition could be fulfilled absolutely we should have a

perfect image at B. It must be our object now to see how nearly we
may satisfy equation (6) in practice.



128 THE THEORY OF OPTICS [CHA.P. VI

Writing a
,

b, for the coordinates of A, a1} bu for those of B,

we have
u2 = (y~ b)

2 + (%- of
= r* + a? +y* — 2by — 2ax (7).

If p is the radius of curvature of the grating, the equation to the

circle in which the grating cuts the plane of the paper gives

2px = x1 + y
1
.

But our investigation may be made to include gratings, deviating from

the spherical shape, so long as the osculatory circle at 0 has a radius

of curvature p. We therefore more generally put the equation of the

trace of the grating

2px = ftx* + y
2

(8),

where ft is a numerical constant which is one in the case of a sphere.

Combining (7) and (8) we obtain by simple transformations

The second term is of the second order of magnitude as regards y,

and the third term of the fourth, order of magnitude as regards the

same quantity. Retaining only quantities of the second order,

Similarly

In order that the grating should fulfil its object, it is necessary

that at least to this order of magnitude, (6) should be fulfilled.

Hence substituting u and v into that equation and putting the factors

of y and y
2 equal to zero we obtain :

b bx _ n\- + — = + —
r e (10),

The first condition defines the direction in which the diffracted

image lies, for if <f> and & are the angles which AO and BO make
respectively with the normal, r sin <}> = b, and r sin 0 = bu and (10) is

therefore identical with

e (sin 6 + sin <£) = ± n\.

This equation is therefore common to the curved and plane grating.

The second condition now gives the distance of the diffracted image,

for as r cos </> = «, r cos 0 = a1) (11) is identical with

cos2 <f>
cos2 6 . . l
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If 6 and <f> be equal and small, this is the well-known relation

between object and image of a concave mirror.

We must now try to see to wbat order of magnitude we can get rid

of aberrations. Leaving out terms of the fourth order equation (9)

may be written

o / by\* fa 1\ „
w3 = (

r

—

and hence

y
2 + terms of higher orders.

by

The term containing y
z disappears if

and as (11) must be satisfied, this involves also

<*ip = r*.

The first equation places the source of light on a circle of radius 2

p

with its centre in the line 00, and the second equation shows that

the same circle contains the image B.

Limiting ourselves to this circle for the position of the source, (9)

becomes

('-*)(-7
and to quantities of the fourth order,

by x2
f . aB

u = r—- + — ( 1 -
r 2r \ p .

bxy a?
v =n—^ + —

r2 2rx

Comparison with (6) shows that the terms of the fourth order

depend on the factor

K i-fK( i -f) <->•

In the position in which Rowland’s gratings are generally used

a l̂ = p = r1 and a = p cos2 <£ = r cos <£. Hence (12) reduces to

(1 + cos 4>) (sec <t>
- 0)1

p

(13).

The terms of the fourth order cannot be got rid of therefore except

for a particular value of <£. For spherical gratings /3 = 1 and the second

factor of (13) is small for small values of <f>, so that the aberration is

least important for the spectra of lower orders. It could be corrected

entirely for a particular value of <£ by making (i = sec </>, but this would

involve departure from a spherical surface.

9
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The outstanding error of optical length for spherical gratings

is obtained by restoring in (12) the dropped factor a?j2 or y
4
/8p

2
.

The error then reduces with (3 = 1 to

— sin <ji tan <j> or sin tan <£.

The maximum error of optical length may be as much as a quarter

of a wave-length without seriously damaging the definition. Hence if

y is half the width of the spectrum, we have for the condition of prac-

tically perfect definition,

qj
*

sin d> tan <f><\
2p

and if sin 6 = 0 and sin =—
,
the greatest value of y which is half

the width of the grating should not exceed

(2

p

z
e cot (2e cot

The dispersion (Art. 61) of the grating is njecosO, and for 9 — 0

is therefore independent of the wave-length. The grating used in

such a way that the spectrum appears on its axis forms, therefore, a

normal spectrum.

Rowland’s method of mounting the grating, which combines the

advantages of maximum definition and the formation of a normal

spectrum, is shown diagrammatically in Fig. 87. G is the grating

and is held by a rigid beam GG of length equal

A to the radius of curvature of the grating, which

fX carries at its other end the photographic camera

7]\ HK. AS and BS are two strong beams placed

\ at right angles to each other and carrying rails

\ which support two carriages which can roll

\ along the beams and support in their turn

I VV* the beam GG which is pivoted on them. The

s
3

is placed at S. As G, S, G lie on a circle of

Fig. 87. diameter p, a luminous source at S will always

have its image at G, when the proper position of

the beam GG has been found. As the beam is rolled along the rails,

successive wave-lengths and successive spectra make their appearance

in proper focus at G. For a given position of the beam, the focus

for the different wave-lgagths lies on a circle of diameter p, and the

photographic plate HK must therefore be bent to a curvature equal to

twice that of the grating. The angle GGS is the angle called 4> above,

and as 0 = 0, e sin 0 = nX
,

and as SG= p sin 0,

u on _ n^P
it follows that SC =
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The beam SB may therefore be divided into a scale of wave-lengths by

equal divisions, and the wave-length which occupies the centre of the

field at C may be read off directly on that scale.

A complete discussion of the theory of the concave grating which

we have in great part followed here, has been given by Runge, and

published by Kayser (Spectroscopie,
Vol. i. p. 400). The same volume

contains valuable information on the methods of adjustment and

on the literature of the subject. It should however be mentioned

that though later investigations have simplified the analysis, the

essential points of the theory are all contained in Rowland’s* original

papers.

70. Measurement of wave-length. Plane gratings allow us to

measure the length of a wave of light (A). In Fig. 88, C represents a

T

Fig. 88.

collimator which admits the light through a narrow slit. The source

must be one sending out nearly homogeneous radiations, as e.g. a tube

filled with a vapour under reduced pressure and rendered incandescent

by the electric discharge. The light is allowed to fall on a grating

at G and is observed by means of a telescope T. If the axis of the

telescope coincides with the direction of a maximum of light in the

diffracted beam, we have the relation

e (sin 4> + sin 0) = n\

where the letters have the same meaning as in Art. 60. If the

incident wave-front coincide with the plane of the grating, <£ = 0

and 0 becomes the deviation. If the grating be used in minimum

deviation <£ = 0 and the deviation is 20 =— . The deviation being

capable of very accurate determination, the wave-length is found

* “ On Concave Gratings for OpticaLPurposes ”
; Phil. Mag. xvi. p. 197 (1883).

See also J. S. Ames’ “ The Concave Grating in Theory and Practice ”
; Phil. Mag.

xxvii. p. 369 (1889).

9—2
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directly, when the distance between the lines of the grating is

known.

When high accuracy is required the grating ceases to be an efficient

means of determining wave-lengths, on account of the difficulty of

avoiding irregularities in the ruling. If these, as is often the case,

are of a periodic character, the average value of e ceases to determine

completely the position of the maximum of light.

An important aspect of the problem comes into view when it is

inverted. In measuring a wave-length we are comparing the length

of a wave of light with our standards of linear measurement. These

standards are arbitrary
;
their permanence depends on the preservation

of a metallic rod, which is liable to vary in length owing to temporary

or permanent causes. It is therefore not surprising that a proposal

—first made by Lamont in 1823, and subsequently emphasized hy

Maxwell—to express the common standards of length in terms of that

of a homogeneous radiation, should have received serious attention

when experimental methods were sufficiently advanced. This state

was reached when Michelson had introduced his interference method,

which for this purpose is much more accurate and reliable than the

grating.

A comparison of the standard metre, preserved at the Bureau

International des Poids et Mesures at Meudon, near Paris, with the

radiations of three Cadmium lines, was successfully accomplished by

Michelson in 1894. A certain number of intermediate optical

standards were constructed, each containing as its essential part two

Fig. 89.

mirrors A and B (Fig. 89), with the necessary adjustments to allow

their silvered surfaces to be placed parallel to each other. The

distance between the planes of the silvered surfaces of A and B
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determines their optical length. Nine standards were used, having

distances between the mirrors respectively of 10 cms., \ x 10 cms.,

£ x 10 cms., and so on, the smallest being equal to 2T3- x 10 cms. or

a little less than half a millimetre. Their relative lengths were

determined by comparing each of them with the one having nearly

double or half the length. The deviations from the exact commen-

surate ratio is determined by the interferometer. The disposition of

the mirrors of the instrument has to be adapted for the purpose, an

additional reflecting surface H being introduced, and the front surface

ofA (Fig. 90) taking the place of c in Fig. 44.

Fig. 90.

The eye observing at E through a telescope sees the image of A,

reflected at K superposed on the images, seen directly, of the four

mirrors on B and G which lie side by side and above each other.

Under suitable conditions of distance, interference fringes are then

seen. The mirrors A and one of the standards G are placed on

carriages which by means of two parallel screws can be moved inde-

pendently backwards and forwards in such a maimer that their surfaces

remain absolutely parallel.

Let it be required to measure in wave-lengths of a particular

radiation the difference between the length of the standard G and the

double of the length of the standard B. The following operations are

necessary.
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1. Place the surface of reference A at the same optical distance

as the front surface of C, determined by the plane of its lower

mirror : turn that mirror slightly about a vertical axis. With white

light, vertical interference fringes will appear projected on the lower

surface of C, and the dark central fringe which marks the position

of zero difference of path may be placed at the edge of C which is

nearest to B. Now displace the mirror B parallel to itself until

vertical fringes also appear on its lower mirror. Adjust the distance

and tilt the mirror until the fringes are spaced equally with those

on B and the central dark fringe lies on that edge of B which

is nearest to C. At the end of this operation the lower part of

the field contains vertical fringes both on the left and right side,

and the two central black fringes are almost in contact with each

other.

2. Move the plane of reference A parallel to itself until its

relative position to the further and upper mirror of B is the same

which it previously had to its nearer and lower mirror. The dark

fringes will now appear only on the right and upper quadrant of

the field.

3. Move the standard B back through its own length so that its

front mirror now occupies the same position relative to A which it had

at the end of the first operation. The dark fringes are now seen on

the right and lower quadrant of the field.

4. Move the plane of reference back until it has the same relative

position to the upper mirror of B which it had at the end of the

second operation. The dark fringes now appear again in the right and

upper quadrant of the field. But if the standard C has exactly double

the length of B the fringes will also be seen in the left upper quadrant.

If the standards have been sufficiently well adjusted to begin with,

this will be the case, but the central fringe will be slightly displaced.

This displacement in terms of the number of fringes (say of the sodium

radiation) gives the required difference in wave-lengths. Fractions of

wave-length may be measured by slightly tilting the compensator L,
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which moves the fringes so that they can be made to occupy any

desired position.

The length of the shortest standard must be determined in terms

of the wave-length of some homogeneous radiation, the red line of

Cadmium being suitable for the purpose. To perform this part of

the work, let B be the standard to be measured and place some

other standard, say C, at such a distance that with proper adjust-

ment as regards parallelism, rings of suitable diameters appear on

one of its mirrors. At the same time the front surface of B is

brought to the same optical distance as A and slightly inclined so

that the vertical fringes appear as before. The mirror A is now

moved back so slowly that the circular fringes on B may be counted

as they contract and disappear at the centre. The vertical fringes

on the lower mirror of B disappear as the optical distance of A is

increased, but they reappear on the upper mirror in exactly the

same position as soon as A has moved through the length of the

standard. The whole number of rings that have disappeared together

with a fraction which can be measured by the compensator gives the

required number of wave-lengths. It is of course necessary to use

homogeneous light for this ring system, while at the same time white

light is necessary to observe the straight line fringes under the best

conditions.

The next operation consists in obtaining a length equal to ten times

that of the longest standard of 10 cms. This is accomplished by moving

the standard back ten times through its own length. The previous

description suffices to show that this can be done by keeping A
stationary while moving the standard back and observing the fringes

to appear first on its lower and next on its upper mirror. The mirror

A is next moved back until the fringes appear again on the lower

mirror of the standard, and this is repeated ten times. Finally, the

whole distance through which the standard is moved is compared with

the metre. For this purpose the standard carries a side-piece having a

line marked on it which can be brought into the same field of view of a
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microscope as a similar mark attached to the ends of a metre measure.

The above gives, in outline, the method, which was admirably carried

out by Professor Michelson. For all details the original paper* should

be consulted. As the result of this work the wave-lengths of three of

the Cadmium lines referred to air at a temperature of 15° C. and a

pressure of 760 mm. were found to be

:

red line : A. = 6438 ‘4722 A,

green line: = 5085 ‘8 240,

blue line: = 4799'9107.
o

The symbol A denotes the unit now generally adopted and called
o

an Angstrom, which is equal to 10~ 8 cms. According to a suggestion

of Johnstone Stoney it is also sometimes called a tenth-metre.

An independent comparison of the metre with the wave-length

has recently been made by Messrs Benoit, Fabry and Perot t. Im-

portant advantages were gained in this new determination owing to the

greater simplicity of the apparatus and to the shorter time occupied

in the measurement : this is important because the chief danger

to the accuracy of the work lies in the changes of temperature and

the consequent changes in the length of the standards during the

measurement.

The interference plates of Fabry and Perot have already been

described (Art. 43). For the purpose of this research five standards

were constructed, each twice as long as the next shorter one. The

vertical section of the frame of the standards made of invar metal

had the form shown in Fig. 91. Three invar screws a
,

b, c fixed to

* Bureau International des Poids et Mesures : Travdux et Memoires.

t Transactions of the International Union of Solar Research.
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both extremities of the frame are provided with hemispherical polished

heads. Against these the silvered surfaces of glass plates which have

a surface of 5 square cms. are pressed by three springs. The surfaces

of the heads may be ground until the plates placed against them are

almost exactly parallel and the final adjustment may be then made

by altering the tension of the springs which press the plates against

the supports. The distance between the silvered glass plates in the

successive standards was: 6‘25, 125, 25, 50 and 100 cms. As in

the case of Michelson’s determination, each had to be compared with

the next, and the difference between its length and the double of the

length of the previous one had to be measured. But the process here

is much simpler as the position of the standards remains fixed the

whole time. The criterion that one of the air-plates is exactly double

the length of the other is found by means of the bands which appear

with white light when the relation is approximately established. The

bands are of the same nature and follow the same law as Brewster’s

bands.

As it is impossible to obtain accurately the theoretical relationship

of 2 : 1 in the standards, means must be found to determine the error.

For this purpose the light after passing through the standards is sent

through a thin wedge of air, included between two silvered glass plates,

which serves as compensator. It of the two plates under comparison

one has nearly twice the thickness of the other, a ray which has passed

through the thicker one and been reflected twice backwards and for-

wards in the thinner one has traversed an optical path very nearly

equal to that of another ray which has been reflected once backwards

and forwards inside the thicker one. If E and E' be the distances

between the silvered plates of the standards respectively the difference

in path to be corrected is ± (4E' - 2E). If 2E' is greater than E, the

central fringe appears on the wedge at a point where its thickness

is e, if the ray which has traversed 2E has received an additional

retardation Se (by means of two internal reflexions) while the ray

which has traversed 4E' passing straight through the wedge has an
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additional path of e only. We have then, where the central fringe

appears in white light,

4A 2E + 3&j

e = 2E'-E.

It is clear that the fringes must be observed by an eye or microscope

which is focussed on the wedge. In white light the position of the

central fringe can be accurately observed if the standards have pre-

viously been placed exactly parallel to each other. The manner in

which the wedge has to be standardized so that the quantity e may be

determined in wave-lengths presents no difficulties.

The complete arrangement of the standards placed ready for

comparison is shown diagrammatically in Fig. 92. All standards

are placed in a line and carefully adjusted so as to be accurately

parallel. The comparison can then be made quickly without moving

any of them. If e.g. the standard M.
,
having a length of one metre,

is to be compared with B, having a length of 50 cms., white light

coming from X is reflected by the mirrors 1 and 2, and traverses

M and B, the mirror 5 being moved out of the way. It is then

reflected by the mirror 3 and passes through the compensating

wedge F, being finally observed through the magnifying glass L.

Inspection of the figure shows how the different mirrors are used when

comparing successively the different standards. The two remaining

operations consist in measuring the shortest standard in terms of the

wave-length and in comparing the longest with the metre measure,

marked LO in the figure. As regards the length of the 6 ‘25 cm.

standard, this can be determined once for all to the nearest whole

wave-length, as changes of temperature only affect the fraction,

which is found in each comparison by measuring the diameter of the

first ring.

For this purpose the tube T is used which produces cadmium

light of sufficient purity, and the circular fringes are observed at each

determination through the telescope N The mirrors 14 and 15 or 16

serve to observe the fringes of cadmium light in the wedges F or G.
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Though these have been carefully calibrated beforehand, the calibration

is only used to determine the complete number of wave-lengths in the

retardation e, the fraction being determined at the time of observation

by noting the position of the cadmium fringes.

The length of the metre LO made of invar was accurately known

by means of direct comparisons made with the standard metre. It was

placed during each optical comparison side by side with the standard

M in a “comparator” which allowed a couple of reading microscopes,

kept at a fixed distance from each other, to be brought quickly either

above the marks which define the metre or above two marks made in

the upper horizontal surface of the glass plates of the standard M.

The only remaining measurement consists in determining the small

horizontal distance of these marks from the silvered surface ofMwhich

served during the comparison with the 50 cms. standard marked B in

the figure. For the description of the method employed the reader is

referred to the original paper.

As a result of the measurements the wave-length of the red _aJmium

line was found to be

X= 6-4384696 x 10- 5
cms.

= 6438-4696 A.

The difference of about one part in 2*5 millions between this number

and that found by Michelson is mainly accounted for by the moisture

contained in the air, Michelson’s number referring to air containing an

undetermined amount of water vapour. If the correction to dry air

be estimated and a small alteration made to render the scales of

temperature used identical with each other, Michelson’s value becomes

0"643847000 which is practically identical with the number obtained

by Messrs Benoit, Fabry and Perot. This number may now be taken

to fix once for all the scale of wave-lengths to be used in spectroscopic
o

measurements. It defines the Angstrom, and whatever slight error
o

there may still remain would only cause the Angstrom unit to differ

from 10
-10

cms. by less than one part in a million.

Independently of their application to the establishment of
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absolute standards, Fabry and Perot’s silvered air-plates are likely to

render important services in determining relative values of wave-

lengths; a convenient method for the purpose has been described by

Lord Rayleigh*.

71 . Historical. Joseph Fraunhofer (born March 6, 1787, died

June 7, 1826) was engaged from an early age in a glass manufacturing

works, and became specially interested in the construction of telescope

lenses. He recognized the fact that their improvement, especially as

regards achromatism, depended on an exact determination of refractive

indices, and that the chief difficulty in that determination lay in the

difficulty of obtaining homogeneous radiations which could serve as

standards. The sodium flame was made to serve as one kind of

radiation, and in using sunlight he discovered that nature had placed

standard radiations at his disposal. The spectrum of the sun was

seen to be traversed by dark lines—now called Fraunhofer lines

—

which marked the position of homogeneous radiations by a deficiency

in radiance just as well as could have been done by an increase

in it. To the earlier observation of these lines by Wollaston no import-

ance had been attached, because it had not been recognized that their

position was invariable and independent of the mode of observation.

A few years before his early death, Fraunhofer was led to the study of

diffraction effects and constructed the first gratings, by stretching

fine wires between two screws having narrow threads, and also by

ruling lines with a diamond point on a glass surface. He used these

gratings for the determination of the wave-length of the principal

Fraunhofer lines.

o

Table VI. gives in A. U. of 10“8 cms. the wave-lengths as obtained

by Fraunhofer and subsequent observers.

Not much progress could be made in improving the accuracy of

wave-length determination until the manufacture of gratings was

improved. Those made by Nobert towards the middle of last century

* Collected Works
,
Vol. v. p. 312.
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o

obtained considerable reputation, and Angstrom (born Aug. 13, 1814,

died June 21, 1874, in Upsala) Constructed an Atlas of the Solar

Spectrum with one of Nobert’s gratings, which for a considerable time

remained the standard to which all wave-lengths were referred.

Table VI.

Solar

line

Fraunhofer
1823

o

Angstrom
1868

Rowland
1887

G 6561 6562 6563

D 5890 5892 5893

E 5268 5269 5270

F 4859 4861 4861

G 4302 4307 4308

H 3963 3968 3969

Lewis Morris Rutherford, an amateur astronomer, and lawyer by

profession, ruled gratings, by means of an automatically acting

dividing engine, which were considerably better than any previous

ones. He was the first to rule gratings on metal, which being softer

than glass did not destroy the ruling edge of the diamond to the same

extent. Most of his gratings were made about the year 1880.

Henry A. Rowland (born 1848, died 1901) effected still greater

improvements. An essential portion of machines intended to rule

gratings is the screw, which should be as free from errors as possible.

Slight accidental displacements of the lines, so long as they are not

systematic, and especially not recurring periodically, are not of serious

importance. Rowland’s first achievement consisted in the making of a

screw more perfect than any made before. The following passage

taken from his article on “Screw” in the Encyclopaedia Britannica

gives an idea of the method he adopted:

“To produce a screw of a foot or even a yard long with errors not

exceeding xxnyoth of an inch is not difficult. Prof. Win. A. Rogers, of
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Harvard Observatory, has invented a process in which the tool of the

lathe while cutting the screw is moved so as to counteract the errors

of the lathe screw. The screw is then partly ground to get rid of local

errors. But, where the highest accuracy is needed, we must resort in

the case of screws, as in all other cases, to grinding. A long solid nut,

tightly fitting the screw in one position, cannot be moved freely to

another position unless the screw is very accurate. If grinding material

is applied and the nut is constantly tightened, it will grind out all

errors of run, drunkenness, crookedness, and irregularity of size. The

condition is that the nut must be long, rigid and capable of being

tightened as the grinding proceeds, also the screw must be ground

longer than it will finally be needed so that the imperfect ends may be

removed.”



CHAPTER VII.

THE THEORY OF OPTICAL INSTRUMENTS.

72. Preliminary discussion. There is a limit to the power

of every instrument, due to the finite size of the wave-length of light.

According to the laws of geometrical optics, the image of a star

formed in a parabolic mirror should be a mathematical point, and

if this were the case the sole consideration to be attended to in the

construction of optical instruments would be the avoidance of

aberrations. According to the wave theory of light, however, the

image of a point source is never a point, however perfect the

instrument may be in other respects, and the longer the wave-length

the more does the light spread out sideways from the geometrical

image. It is therefore useless to try to avoid aberrations beyond a

certain point, and it becomes a matter of primary importance to

define the natural limit of the power of an instrument, so as to be

able to form a clear idea as to how far the optician may usefully

spend labour in the refinement of his surfaces.

Let a wave divergent from a point source A (Fig. 93) be limited by
an aperture SS’ in a screen,

tt and let the light transmitted

As-. ~ Ik through this aperture be no

further obstructed in its

\ ^ ^ passage by any perforated

ff—TSr
lJ

'

|p^* screens, but pass entirely

I I]
through lenses, or be re-

Fig. 93 . fleeted or refracted in any

manner until ultimately the

wave surfaces become portions of spheres concave towards a point P.

It will be necessary to calculate the amplitude in the light in the

neighbourhood of P, and a preliminary proposition will help to simplify

the problem. Trace the rays AS, AS', limiting the beam, according

to the laws of geometrical optics, and let TU
,
T'TJ be portions of

these rays. Place screens at KK' or HR’ with apertures just sufficient
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to transmit these rays, or, in other words, let the edge of the aperture

KK or HH coincide with the geometrical shadow of the opaque

portions of the screen SS'. The proposition to be proved is, that the

introduction of these screens does not alter the distribution of light

in the neighbourhood of P, and that the screen SS' may be replaced

by either of them, leaving all the amplitudes near P as they were.

The truth of the proposition depends on all portions of the wave

surface passing through KK contributing equally to the amplitude of

P, as P being a point of convergence of the rays, its optical dist nice

to any point of KK

'

is the same. The screen KK' obliterates only

the waves which have spread out laterally before they have reached the

plane of the screen. The portions so obliterated are a very small

fraction of the light forming the image at P which is due to the com-

bined action of the complete wave. The same is true for the resultant

amplitude at Q so long as the aperture KK' only contains a small

number of Fresnel zones drawn from Q as centre.

In order that students should not be misled into an erroneous ap-

plication of this proposition, we give an example where it fails. SSX

(Fig. 94) is a screen limiting a parallel

,
beam of light, IIS being the edge of the

Tl -Tj o geometrical shadow. SSX cannot here be

replaced by a screen TTX giving the same

geometrical shadow because in this case

equal parts of the wave-front do not equally

contribute to the amplitude at Q. Tracing

Fresnel zones from Q, the loci of the

division between two zones are parabolas

(Art. 52). The parabola QS traces the

Sf

\

\

\

\

\ \

V
\«

Fig. 94.

limiting zone for the screen SSi, while for TTX the limiting curve would

be a different parabola QT. If the angular space TQS includes an
odd number of zones, the change of position of the screen from SSi to

TTX would cause a difference in amplitude equal to that of a complete

zone, so that a maximum of light might be changed into a minimum
or vice versa.

73. Image formed by a Lens. It is convenient to imagine the

beam to be now limited by a diaphragm just inside

the lens which concentrates the light at F. The
traces of the wave-fronts are circles with A’as centre,

and if D = 2R is the diameter of the lens, p the

distance of any point P from F, andf- GF%

AP2
=f* + (R + Py,

BP2

-f* + (R - p)
2
;

/. AP- -BP2 = ARp,
8. 10
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.( 1 ).

and p being very small compared with/,

AP-BP =

If we were only to consider rays in the plane of the paper, then

light at P would be destroyed by interference if

2Rp

f
nX (2 ),

2Rp
and bands of maximum brightness would appear where +

approximately. If we imagine the figure to revolve round the axis

OP, the luminous appearance in the plane through Ft
at right angles

to the axis, would be a luminous disc fading outwards until the in-

tensity becomes zero when p =/k/P. This disc would be surrounded

by dark and bright rings, the brightest parts of the rings corresponding

to the distance p — (n + fkjP.

Owing to the rays which do not lie in the plane of the paper the

destruction of light takes place at a distance somewhat greater from P
than that given by the above approximate calculation.

Sir George Airy* was the first to solve the problem of the distribu-

tion of light in the image of a point source. His solution is expressed

in the form of a series, while Lommel gave it subsequently in terms of

Bessel functions. The main effect however is correctly represented by

the above elementary considerations. The diffraction image is a disc

surrounded by bright rings, which are separated by circles at which

the intensity vanishes.

A
If we write P = m p (3),

the values of m for the circles of zero intensity are given in the

following Table. They differ very nearly by one unit, but instead of

being integers, as the approximate theory would indicate, approach a

number which exceeds the nearest integer by about one quarter.

Table VII. Parle rings.

Order of

ring
m

Total light

outside dark
circle

i 1-220 •161

2 2-233 •090

3 3-238 •062

4 4-241 •048

5 5-243 •039

6 6-244 •032

i

* Trans. Camb. Phil. Soc., v. p. 2SS (1834).
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The third column of Table VII. gives the amount of light lying

outside each ring. Thus the first number ’161 indicates that '839 of

the total light goes to form the central disc and the difference between

the first and second number gives the fraction of the total light which

forms the first ring. These differences are recorded in the last column

of Table VIII. which is mainly intended to give the values of m for

the circles of maximum illumination and the corresponding intensities.

The third column contains the intensity at the maximum in terms of

the central intensity.

Table VIII. Bright Bings.

Order
of disc

or ring
m

Maximum inten-

sity in terms of

central intensity

Fraction of total

light in disc

or ring

i 0 i •839

2 1-638 •01745 •071

3 2-692 •00415 •028

4 3-716 •00165 •015

5 4-724 •00078 •009

6 5-724 •00043 •006

Fig. 96. Fig. 97.

Fig. 96 gives in diagrammatic

form the relative sizes of the cen-

tral disc and the first three rings.

Fig. 97 shows the images of two

sources of light placed at such a

distance apart that the centre of

the bright disc of one falls on the

first dark ring of the other.

74. Resolving Power of Telescopes. It has long been

known to all astronomers working with high powers, that the image
of a star in a telescope has the appearance roughly represented in

Fig. 96, and it is a matter of experience that a close double star

may be recognized as such when the relative position of the stars is

not closer than that represented by Fig. 97. This allows us to calculate

the angular distance between the closest double star which the telescope

can recognize as such.

The radius of the first dark ring being p and the focal length of

the telescope being f, the angle 9 subtended at the centre of the object

10—

2
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glass by two stars which occupy such a position that the centre of the

diffraction image of one falls on the first dark ring of the other is pjf,

which by (3) gives

0 = 1*22 A/Z) (4).

This is the angular distance between the stars when they are on the

point of resolution and no subsequent refraction of light through

lenses can alter this angle. The images may be enlarged but the

rings and disc are always enlarged in the same ratio. This is an

important fact which may be more formally proved in this way : If

the rays crossing at any point of

the diffraction image Q (Fig 98)

are brought by a lens or system of

Fig. 98. lenses to cross again at a point Q',

the optical distance from Q to Q’

along all paths must be the same, and hence the retardation of phase

between any two rays at Q is accurately reproduced again at Q’. If

there is neutralization at Q, there must also be neutralization at Q'.

As Q' is the geometrical image of Q, the diffraction pattern in the

plane of Q' must be the geometrical image of the diffraction pattern in

the plane of Q. Our result may therefore be applied to eye observa-

tions through a telescope, the plane of Q' representing the plane of

the retina.

It appears from the above that the power of a telescope to resolve

double stars is proportional to the diameter of the lens. This result,

which agrees with the facts, depends on the wave-theory, for if the rays

were propagated by the laws of geometrical optics, the size of the

object glass would be immaterial, while the angular separation could

be increased at will by a suitable magnifying arrangement. We also

see that the smaller the wave-length, the more nearly are the laws of

geometrical optics correct.

To resolve stars at an angular distance of 1 second of arc

(4*84 x 10
-6

in angular measure), we should for A = 5 x 10-5
require

a linear aperture of
n x io-5D = T22 x -
° ”

=12-6 cms.
4*84 x 10"6

Hence the angular distance 6 in seconds of arc, which an object

glass of diameter D can resolve, is

a - 12
'

6
6 ~ D *

The Yerkes telescope with an aperture of 100 cms. should be able

therefore to resolve two stars at a distance of one- eighth of a second of

arc. This calculation is based on the supposition that the whole of the

light which passes through the telescope enters the eye. By a well-
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known law which will be proved in Art. 78, the magnifying power

of a telescope is equal to the ratio of the widths of the incident and

emergent beams. If the width of the emergent beam is greater than

the greatest width p which is capable of entering the pupil of the eye,

the full aperture is not made use of. Hence to obtain full resolving

power the magnifying power of a telescope should be not less than Djp.

If it is less, the rays entering the outer portion of the telescope lens

do not enter the eye at all and may as well be blocked out altogether,

thus reducing the aperture to its useful portion.

75. Resolving Power of the Eye. We may apply equation

(4) to the case of two stars or other point sources which are looked

at directly by the eye. It might be thought that a complication

arises owing to the fact that the wave-length of light in the vitreous

humour, which is the last medium through which it passes, is not the

same as the wave-length in air, but this makes no difference. To show

this let Fig. 99 represent diagrammatically a beam of light entering

the media of the eye. If a plane wave-front

passes through an aperture AB of such size

that the beam passing through it may just

enter the pupil of the eye, the first dark

ring of the diffraction images passes through

Q when the difference in optical lengths

from A to Q exceeds by 1'22X that from B to Q. Also a wave-front

parallel to W'F' has the centre of its diffraction image at Q when the

optical distance from all points of its plane to Q is the same, henceA T
must be equal to T22A, and the angle between AB and W'F' is

measured by ATjAB or

1
-22 -.
P

Here A. is the wave-length measured in air.

The width of the pupil is variable, but with light of medium
intensity such that p is about 3 mm. (the actual opening of the pupil

will be less, owing to the convergence produced by the cornea), two

small point sources of light should be resolvable by the eye when at an

angular distance of 42". Helmholtz gives for the experimental value

of the smallest angular distance perceptible by the eye the range

between 1' and 2', which would show that with full aperture of the

pupil, our sense of vision is limited rather by the optical defects of

the eye and physiological causes than by diffraction effects.

76. Rectangular Apertures. If the surface of the telescope is

covered by a.diaphragm having a rectangular aperture, the distribution

of light is more easily calculated, and may be expressed accurately in a

w t

Fig. 99.
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simple form. Let a parallel beam of light of unit intensity fall on a

lens having a focal length f, the lens being covered by a diaphragm with

a rectangular aperture of width a and length b. Introduce a system

of coordinates into the focal plane having its origin at the geometrical

image, the direction % and y being parallel to a and b respectively.

The complete investigation, which it is uot necessary to reproduce here,

shows that the illumination I at any point of the screen is given by

j_ a?b* sin2 a sin
2
/

3

/
ft
\

I ~fW~dr ^

where a = v-axjf\ and (3 - irby/fK

The same equation holds good for the image of a point which is

either sufficiently far away or is provided with a collimator lens. If

the point is moved up or down through a distance e' in a direction

parallel to y, its image is moved up or down through a distance e, if e/e

be the magnification of the arrangement. We may now calculate the

distribution of light in the image of a slit placed parallel to the axis

of y. A point of the slit which is at a distance y from the centre

will produce an illumination at the centre of the image which is equal

to that produced by the centre of the slit at a distance y = y'eje' from

the centre of the image. The total illumination at the centre of the

image, due to a length 2e' of the slit, is therefore

r+e

J e

Idy'

If e be sufficiently large we may substitute ± <x> for ± e at the

limits of the integration and make use of the known value of the

definite integral

sin2<y

We thus find that the illumination at the image is proportional to

r, a~b sin2 a

where a has the same value as before. It follows that the total amount

of energy which is transmitted in unit time through a small surface s

of the image is ksI', where « is a constant which may be determined as

follows. If a ribbon of unit width be cut out transversely to the image,

the total amount of energy transmitted through the ribbon is

f+oo
k I l'dx = Kab.

If E denote the amount of light from unit length of the source trans-

mitted through unit surface of the rectangular aperture, and m the

magnifying power, the total amount of light per unit length of the

image is Eab/m. Hence * = EJm.
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77]

77. Luminous Surfaces. The image of a surface b<fifii§ed by
a straight edge may he calculated from the above. Dii

surface into narrow strips parallel to one of the edges, each^kl^tw^l

have a diffraction image in which the illumination varies as repfl^edte;^^
in Fig. 70, and at each point of the image we should have to at

the effect due to each strip. It is easy to see that at the geometrical

image of the edge, the illumination is half that observed at some

distance outside the edge, where the illumination is uniform, for when

two similar surfaces are placed against each other with their edges in

contact a uniformly illuminated image is obtained, and each half must

contribute equally to the illumination at the dividing line. The

blocking out of one half must consequently halve the illumination. At
other points it can only be expressed in the form of definite integrals

or calculated- by means of a series. The intensities are plotted in

Fig. 100. The dotted line AB marks the edge of the geometrical

image of the surface. The intensity at that point is '5, and falls off

rapidly towards the outside of the image.

When a telescope is used to examine an extended surface such as

the moon, the problem consists in interpreting differences in an

unequally illuminated surface. Details which are as near together as

two stars when at the point of optical separation may be indistinguish-

able on an extended surface. To distinguish clearly between two small

features in an extended surface it is generally necessary to increase the

resolving power until the central discs of their images stand quite clear

of each other.

For a given distance from the geometrical edge the intensity is less

than at the same distance from the image of a narrow aperture. Hence,

as has been pointed out by Wadsworth, the images of two surfaces
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may be closer together than the images of the slit without their images

becoming confused.

The points marked 7r and 2rr on the horizontal line of Fig. 100

represent the places where the first two minima of light would occur in

the image of a narrow slit coincident with AB.

78. Illumination of the image of a luminous surface. The
resultant energy which leaves a luminous surface is

the same in all directions for equal cross-sections of

the beam. As with a given small surface 8, Fig. 101,

the cross-section of the beam varies as the cosine of

the direction angle $, the intensity of radiation sent out by a surface 8
is proportional to cos 0, but for small inclinations to the normal, we
may take the radiation to be independent of the direction. If an

image of a surface 8 is to be formed, the illumination of the image

must be proportional to the amount of light which the luminous

surface sends through the optical system. If all the light which

passes through the first lens passes also through the other lenses,

this is proportional to the surface S, and to the solid angle <«> subtended

by the lens at a point of 8. We may therefore write for the light

passing through the optical system ISa>, where I solely depends on the

luminosity of the surface. If s is the size of the image of 8, and if

the image is such that the illumination is uniform, the brightness of

the image is equal to ISo>/s.

We shall first consider the case that the linear dimensions of s are

such that the diameter of the diffraction disc may be neglected in

comparison with it, so that we may find the relation between 8 and s

by the laws of geometrical optics.

Fig. 101.

Let LL and MM be the wave-fronts diverging from P and

e, L converging to the image Q re-

spectively, and imagine a second

wave-front UR' slightly inclined

, m* to the first, to diverge from P'.
L R \iPO = P'O, the second wave-front

Flg ‘ 102
‘ may be obtained by turning LL'

about 0 through a small angle 0. The optical length from P' to L has

been increased in the change, by the quantity UL, and the optical

length from P' to L' has diminished by the same amount. The
optical lengths from L to M and L'M' have not been altered (Art. 23).

Hence if Q' is the image of P' the optical length M Q' must differ from

MQ' by 2UL, the total length from P' to Q' being the same whether
measured by way ofLM or by way of L'M'. It follows that to obtain
Q’ we must turn round the wave-front M'M through such an angle

that HM= 2UL. If D is the width of the beam at LL and d the
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width at MM', the angles POP' and QOQ' are 2RLjD and MHjd
respectively, and are therefore in the inverse ratio of D : d. It

follows that

PP' d*PO
QQ’ D x O'Q W-

If a square of surface S and sides PP' is formed in a plane

at right angles to 00', its image s will be a square with QQ' as

sides, hence
po2

s~ D2 ' O'Q*'

The solid angle (w) of the beam entering the first lens is ttD2/AP02
,

and the solid angle («/) of the beam converging to Q is -nd
2jA0

Q

2
.

Hence the illumination per unit surface of s is

LSoj = r
d2 PO2

ttD2

s
1

D* O'Q2 ‘ APO2

AO'Q2
= 1* (7 ).

Before discussing the last equation, we note two interesting results

which have incidentally been obtained in the investigation.

QQ' is inverted as compared with PP' and this must always be the

case according to the construction when the limiting ray MQ is the

continuation of the ray PL on the same side of the axis, but if

the rays have crossed once or an odd number of times between 0 and

O', so that the ray PL becomes the ray M'Q, we should have to turn

round the ultimate wave-front MM' in the opposite direction in order

to equalize the optic lengths of the extreme rays, and the image would

then be erect.

The ratio of the angles QO' Q’ and POP' is the magnifying power

(m) of the arrangement, hence

m =
QQ'

.
PP1

QO' ' PO*

and, by (6),
D
d‘

In a telescopic system D and d represent the width of the incident and

emergent beam respectively, and we have therefore proved the pro-

position which has already been made use of in Art. 74.

The theorem, defined by equation (7), that the brightness of a

luminous surface is determined by the solid angle of the converging

pencil which forms the image, is of fundamental importance. We may
derive three separate conclusions from it. (l) The apparent brightness

of a luminous surface looked at with the naked eye is independent of

its distance from the observer. (2) No optical device can increase the



154 THE THEOKY^ OF OPTICS [CHAP. VII

apparent brightness of a luminous surface above what it is when the

surface is looked at with the naked eye. (3) When looked at through

a telescope the brightness of a surface is independent of magnifying

power up to a certain limit, and above that limit, the brightness varies

inversely as the square of the magnifying power.

The first of these propositions depends on the fact that when looked

at with the naked eye, the solid angle on which the brightness depends,

is determined solely by the width of the pupil, and the dimensions of

the eye; and, independently of casual changes of the pupil, is constant.

Hence the brightness of the solar disc is the same when looked at

from the furthest or from the nearest planet. The total amount of

luminous radiation no doubt diminishes as the distance increases, but

the apparent size of the disc diminishes in the same ratio, and hence

follows the equality of the amount of light per unit surface of the

image on the retina. Elementary considerations are sufficient to show

that the apparent size of the image of a surface varies inversely as the

square of the distance and that illumination is therefore constant, but

the second and third of the above propositions are not quite so obvious.

Imagine a surface, e.g. the moon, looked at through a telescope having

an aperture of diameter D. So long as the magnifying power is less

than Djp, where p is the diameter of the pupil, the width of the beam
entering the eye is p, and the solid angle is the same as if the moon
were looked at with the naked eye. The moon would therefore appear

to be of exactly the same brightness in the two cases, if there were no

loss of light by reflexion and absorption in the optical media of the

telescope : in no case can the moon appear brighter through the

instrument. When the magnifying power (m) is greater than m' = D[p,

the width of the emergent pencil is d = Djm and the solid angle w' is

reduced in the ratio d2

jp
s
or D2

/p
2m2

. Hence for magnifying powers

greater than m', the brightness is reduced into the ratio m'^jm2
. In

observing luminous surfaces, therefore, through a telescope, we may
apply magnifying powers up to Djp without loss of brightness except

through reflexion and absorption, but we do not make use of the full

aperture, and therefore of the full resolving power until the magnifying

power has reached that value. Taking the aperture of the pupil to be

3 mm. this would give a magnifying power of 3^ for each centimetre

or about nine per inch of aperture. There is, however, an advantage

in using somewhat higher magnifying powers, as the outer portions of

the crystalline lens do not assist the definition on account of aberration.

Most eyes see objects therefore more distinctly when the size of the

pupil is reduced to about 2 '5 mm. which would give a magnifying power

of 4 for each cm. of aperture. With greater magnifying powers, there

is no gain in definition and there is loss in brightness. It should be

noted that in all cases so far considered the brightness of the image
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does not in any way depend on the focal length of the lens. It is

otherwise when telescopes are used for photographic purposes. The
solid angle to' on which the brightness depends varies in this case with

(D/ff, D being the diameter and f the focal length. A short focus

lens of large diameter is therefore of considerable advantage in these

cases.

79. Brightness of Stars. The above results apply only so long

as the size of the image of a surface is large compared with the size of the

diffraction image. Other considerations regulate the brightness of the

image of a star. The diameter of the diffraction image of a star has

been shown to be inversely proportional to the aperture. When
looked at with the naked eye, or through a telescope of low mag-
nifying power, the diameter of the disc is determined by the width

of the pupil, and the brightness varies in that case as the amount
of light which enters the eye. If the magnifying power is Djp, the

amount of light collected by the lens is D^jp2 times that collected by

the unaided eye. Hence the illumination of the image of a star varies

as the square of the effective aperture of the lens, so long as the

magnifying power is adjusted so as to be equal to Djp. If less than

that, we must imagine the unused portions of the lens to be covered

and the aperture reduced to its “ effective ” portion. When the mag-
nifying power is Djd

,
d being smaller than p, the linear size of the

diffraction image is increased in the ratio p/d, so that the brightness

now will vary as D2
d'

2

jp\ For star images as well as for finite surfaces

there is therefore loss of light without gain in definition, when the

magnifying power is increased above a certain value. Astronomers

frequently, however, use a higher power than that which according to

the above should give the best results. The reason is physiological

:

Increased size of the diffraction images assists facility of observation,

and increases therefore what may be called physiological definition,

even though there is loss of light and no improvement of optical

definition.

The increased visibility of stars through telescopes is easily ex-

plained. Apart from loss of light due to absorption and reflexion the

brightness of the sky is the same whether we use an instrument or not,

but the brightness of a star increases with the square of the aperture

so that even an opera-glass having an aperture of not quite an inch

should increase the light fifty times. The largest telescopes at present

in use allow the light which enters the eye from each star to be

multiplied by 100,000. It is not surprising then that the number of

visible stars becomes rapidly greater as larger apertures are brought

into action.

The angular diameters of planets occupy an intermediate position

between that of the moon and of the fixed stars. When looked at with
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the naked eye, the diameter of the image on the retina is less than

that of the diffraction disc, hut with Venus, Jupiter and Saturn it is

only a few times smaller. The use of a telescope having an aperture up

to ten times the diameter of the pupil would when applied to these

planets be accompanied by an increase of brightness, but after that

point is reached, they would behave like bodies of finite surface and an

increased aperture would he an advantage because it would allow a

higher magnifying power to be applied.

80. Powers of Spectroscopes. A spectroscope may be used

for two different purposes. In the majority of cases it serves to

examine the radiations of a luminous source by separating them if

homogeneous, or giving the distribution of illumination for different

wave-lengths, if non-homogeneous. But another not less important

function of the spectroscope is to produce homogeneous light. By
allowing the spectrum formed by a source of white light to fall on a

screen with a narrow slit placed so that only rays very near those of a

certain wave-length pass through the slit, we obtain a source of nearly

homogeneous radiations. The power of a spectroscope may be defined

—either as its power to produce homogeneous light, or as its power to

separate two homogeneous radiations of nearly the same wave-length.

Both conditions lead to the same mathematical expression, which we
now proceed to establish.

The radiations sent out by luminous vapours are often very

complicated and sometimes consist of one or more nearly homogeneous

radiations lying close together. Consider a source of light sending out

waves, the lengths of which, X
1 and A2 ,

differ but little from each other.

If the light, after having passed through a slit and been made parallel

by a “ collimator,” falls on a grating, and is then collected by a lens,
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two images will be formed at the focus. The diffraction image of each

is of the same kind as that of a luminous line in a telescope, the object

glass of which has been covered by a screen with a rectangular

aperture, because the grating itself causes the cross section of the

effective beam to be rectangular. If the difference between A
x and A2

is very small, there is a considerable overlapping, and what the eye

perceives is the sum of the illuminations due to each of the two images.

In Fig. 103 the curves A and B show the distribution of intensity of

the two separate slit images, while G gives the sum of the intensities.

The combined curve is so nearly equal to the curve of the image of a

single slit that the eye could not realize that the light is made up of

two different wave-lengths. The two lines are not in that case

“resolved.” Fig. 104^ gives the combined intensities of the same two

lines, when placed three times as far apart, and at such a distance that

the maximum illumination of one image falls on the first minimum of

the other. The curve shows in this case a decided dip in the middle

between two maxima. The intensity at the lowest point is very nearly

'8 of the intensity at the maximum, and the eye clearly perceives that

it is not dealing with a homogeneous radiation. The natural interpre-

tation of a distribution of intensity such as that indicated in Fig. 104

is that the radiation consists of two homogeneous radiations having

wave-lengths corresponding to the positions of the maxima. The two

lines are then said to be “ resolved,” but it is of course possible, and

frequently the case, that the radiation is of a more complicated

character. Not until the distance between the two lines is about

double that indicated in the figure do they stand altogether clear of

each other. According to Art. 60, two wave-lengths A and A' have the

relative position indicated by Fig. 104, if

A'-

A
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N being the number of lines on the grating and n the order of the

spectrum. In order just to resolve lines with this difference in wave-

lengths, SA must be such that

SA_ J_
A
-± Nn

The smaller SA the more powerful is the instrument for the purpose

of separating double lines, and we call as already pointed out Nn the

“ resolving power ” of the spectroscope. There is something arbitrary in

this definition, as the dip in intensity necessary to indicate resolution is

a physiological phenomenon, and there are other forms of spectroscopic

investigation besides that of eye observation. In a photograph or a

bolometer, the test of resolution is different. It would therefore have

been better not to have called a double line
“
resolved ” until the two

images stand so far apart, that no portion of the central band of one

overlaps the central band of the other, as this is a condition which

applies equally to all methods of observation. This would diminish to

one half the at present recognized definition of resolving power. Con-

fusion would result from a change in a universally accepted definition,

but it should be understood that if B is the resolving power, a grating

spectroscope will completely separate two wave-lengths differing by SA

only when
8A _ 2

A ~
jR'

81. Resolving Power of Prisms. It has been proved in

Art. 24 that if in a parallel beam of light, two sets of waves are

originally superposed, the angle 0 between

the two beams after passing through a

prism is

^VT-BS
V — (fa — jj-i) - ,

to

where fa and fa are the two refractive

indices, and a the width of the beam
after emergence. The difference VT-BS,

Fig. 105. for which we write t
,

is the difference

between the paths inside the prism of

the extreme rays of the beam. If the prism is placed so that one of

the extreme rays just passes by the edge, BS= 0 and t will measure
the greatest thickness of the dispersive material through which the ray

has passed. It is easy to extend the investigation so as to include

any number of prisms. If T=%t measures the difference in aggregate

thickness of the material through which the extreme rays have

passed,

0 = 0*2 - Mi) Tja (8),

the material here being considered the same for all prisms.
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This expression leads at once to the resolving power of prism

spectroscopes. The beam passing through the prisms having a rect-

angular cross-section, the angle subtended at the centre of the

focussing lens by the half width of the central diffraction band is

A/a (Art. 54), hence with the definition of resolution of the last article,

we have for the two wave-lengths at the point of separation, 6 = A/a or

(fi2 - /q) _ 1

A T'

The ratio (/*3 — /q)/(A2 — A
x) is the rate of increase of refractive

index per rate of increase of wave-length, and may for small

differences of wave-length be written d^jdX. Hence for the resolving

power

and B=-T d
£.

The minus sign is necessary, as B is essentially positive and d^/dX

negative.

This fundamental relation, due to Rayleigh, shows that the re-

solving power of prism spectroscopes is proportional to the greatest

thickness of the dispersive material traversed by the rays (the edges

of the prisms being arranged along the path of one of the extreme rays

of the beam).

' The distinction between the dispersion and the resolving power is

a very important one. Confining ourselves to one prism, the dis-

persion OKuz — fa) is obtained from (8) and
\ varies inversely as the cross-section of the

, / V\ beam. If a prism be placed in one of the two

r^\\ positions A and B (Fig. 106), the position A
A gives a greater dispersion than B, in the ratio

of tjai : t2/a2 ,
but the resolving powers only

~ ~
7K vary in the ratio tx : t2 . The greater dis-

- / persion is therefore not accompanied by a corre-

spondingly greater resolving power, the reason

\ being that the narrow beam of A, though giving

Fig. 106. greater dispersion, gives also a broader diffraction

image. The. increased dispersion means therefore

chiefly increased magnification without increased definition.

With ordinary flint glass dfxfdX is about 1000 in the neighbourhood

of the sodium line, so that one cm. of glass is sufficient to separate

the two sodium lines, the difference between their wave-lengths being

very nearly equal to the thousandth part of the wave-length of one of

them. When the prism is in the position of minimum deviation, the
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length t is equal to the thiclcness of the base of the prism. The
superiority of gratings over prisms as regards resolving power is shown
by the fact that the gratings in common use have about 5600 lines to

the centimetre, and if ruled over a distance of 5 cms. the total number
of lines would be 28,000. To produce with prisms a spectroscope of

resolving power equal to that of the first order spectrum of the grating,

would require a thickness of 28 cms. of glass, or say 7 prisms, having

a base of 4 cms. each.

It will be noted that the resolving power of prisms depends on the

total thickness of glass, and not on the number of

prisms, one large prism being as good as several

small ones. Thus all the prisms drawn in Fig. 107

would have the same resolving power, though they

would show very considerable differences in dis-

persion.

82. Resolving power ofcompound prisms.

The only kind of compound prism we need consider

here is the one giving direct vision. Two prisms of

crown glass, A, A' (Fig. 108), may be cemented to a prism B of flint

adjusted so that a ray of definite wave-

length falling on the compound prism

in the direction of its axis passes out

in the same direction. It follows by

symmetry that in the centre prism B,

the direction of the ray must then also be along the axis. The extreme

thicknesses travelled through by the rays are, on one side a thickness t'

in flint, and on the other side a thickness 21 in crown. The resolving

C A’

Fig. 108.

power of such a prism is

dfx

dk
21

dX'

where
dfi

dX
refers to flint and ^ to crown.

dX
The dispersion of the

crown glass is here opposed to that of the flint and the resolving

powers of such compound prisms are small taking account of the

thickness of glass traversed.

83. Greatest admissible width of source. In considering

the effects of interference and diffraction, we had considered the source

of light to be either a point or a line, but in the actual experiment,

every source has finite dimensions, and as in general it is important

to secure as much illumination as possible, these dimensions are in-

creased as much as is consistent with good definition. The limit

to which we can increase the dimensions of the source depends to

some extent on the object we have in view. When, e.g., we wish to

measure accurately a spectroscopic line known to be single, we may
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TV

<5 £>•
A' A
Fig. 109.

use a much wider slit than if we wish to see whether a line is single

or double. But even in the last case, there is a limit below which

very little is gained by narrowing the source. To determine this limit*

we consider the diffraction pattern of the image of a slit. Widening
the slit alters the law according to which the

intensity of light is distributed in the diffraction

image, and it may be seen from an inspection of

Fig. 70 that increased width of slit means an

increase in intensity which is greater for the

weaker portions near the minimum than for the central portion at the

maximum. Computation shows however that until the geometrical

image of the slit exceeds the eighth part of the width of the central

diffraction band, the alteration in the distribution of light is insignifi-

cant, so that there is not much advantage in narrowing the slit beyond

this limit. Let light passing through the slit at O' (Fig. 109) and the

collimating lens A'B' ultimately be focussed by the lens AB. The

centre of the image being at the principal focus, the geometrical image

of the slit has a width equal to the eighth part of the diffraction band

when BO —AO = A/8, 0 being the image of one of the edges of the

slit. Fermat’s principle at once leads to the conclusion that if O' is

the edge of the slit which has its image at 0, A'O’ — B'O' = A/8. The

width of the slit is then found by geometrical considerations to be

/A/4Z), where D is the aperture and/ the focal length of the collimator

lens. Writing </> for the angle subtended by the collimator at the slit,

the greatest admissible width (d) of slit, for full definition, becomes

A

<f> is generally about 1/16, so that the width of the slit should not

be more than four wave-lengths. When extreme definition is not

required, we may, without seriously interfering with the accuracy of

the observations, allow a difference in phase of a quarter of a wave-

length between the extreme rays. This would double the admissible

width of slit. Two spectrum lines placed in the position of Fig. 104

would show with this width of slit a diminution in intensity amounting

to 10% at the lowest point of the intensity curve, instead of 20%
which they give with an indefinitely narrow slit. The resolution would

be more difficult, but under favourable circumstances not impossible,

as to some extent, the smaller variation in intensity is counterbalanced

by increase in brightness. The above condition A'O' - B'O' = A/8 may
conveniently be expressed in a different form. Let 0" be the other

edge of the slit, then by symmetry A!O' - B'O'' and hence

B'O" — B'O = A/8.

We may say therefore that for perfect definition the admissible width
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is determined by the condition that the distances from different points

of the source to any one point of the edge limiting the beam shall

not exceed one eighth part of the wave-length. In many cases this

difference may be increased to one quarter of a wave-length. When put

in this form the proposition is of great practical utility. Thus if the

bright spot at the centre of the shadow of the circular disc of diameter

d is to be observed and f be the distance from the disc of a small

opening, through which the light enters, the proposition shows that

the greatest admissible linear dimension of the opening is f\j2D.

84. Brightness of image in the spectroscope. When dealing

with homogeneous light, the investigation of Art.78 can be applied and

we get the maximum illumination when the pupil is filled with light.

For a given prism or grating this determines the magnifying power of

the observing telescope, at which there is both full resolving power and

full illumination. The former is lost by diminishing, while illumination

is lost by increasing the magnifying power. Errors are frequently

committed, owing to the belief that illumination depends on the ratio

of the aperture to the focal length either in the collimator or the

telescope of the spectroscope. This is not correct. It is important,

however, to consider both the vertical and horizontal aperture of the

beam as it leaves the grating or prism. The prism narrows or widens

the beam, unless it is in a position of minimum deviation, and with a

grating the width depends on the angle at which the spectra are observed.

When it is important to magnify, even at the risk of losing light, the

spectroscopes have an advantage over telescoped, as by placing the

prism out of minimum deviation, in such a way that the beam is

narrowed, we enlarge the image in one dimension only, and it is just

that lateral magnification which is required. Hence the corresponding

loss of light is less than it would be if the enlargement were done by a

higher power eye-piece. The so-called half-prisms act in this way,

spectroscopes being constructed of considerable magnifying power but

comparatively small resolving power by cutting the direct vision

compound prisms (Art. 82) into two equal halves at right angles to

the axis and using one of the halves only. Light falling on the face

which stands perpendicular to the axis enters the prism with a width

BC (Fig. 108) and leaves it with a reduced width IIK.

When the light is weak, the slit of a spectroscope has often to be

widened more than is consistent with full resolving power and this has

to be taken into account when designing spectroscopes which are likely

to be used to analyse feeble sources. It is convenient to introduce a term

which specifies the resolution which an instrument is giving under the

actual conditions in which it is used. I therefore define A/<A to be
the “ purity ” of the spectrum if S\ be the difference between two
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wave-lengths which just do not encroach upon each other. With

indefinitely narrow slits the purity becomes identical with the resolving

power, and generally we may write, if P he the purity and B the

resolving power : P =pB, where p, a function of the slit-width, may he

called the purity factor. To establish a connexion between the purity

factor and the slit-width we must fix on the separation 8X which we con-

sider sufficient for resolution. For narrow slits we have already agreed on

a test of separation and seen that when two lines are just resolvable

the illumination at the point which is half-way between them is *81 of

that which holds for the two maxima. We may then take as a con-

venient criterion for separation, also in the case of wide slits, that

separation which gives the same diminution of light between the two

slit images. The way in which the purity and intensity vary with the

slit images is shown in Table IX.* The width of the slit is given in

units such that it is obtained in centimetres by multiplication with

Xf/d where f and d are respectively the focal length and diameter of

the collimator lens.

TABLE IX.

Width of slit Purity Factor Intensity

0 X Xf/d 1 0
0-25 •986 •246

0-5 •943 •467

1 •780 •774

1-5 •579 •890

2 •450 •903

3 •311 •931

00 0 1

The table shows that with a slit width of Xfj4d there is only a

slight loss of purity, and that width may be considered to be the

normal one for sufficiently strong sources of light—a further narrowing

would only lead to loss of light without appreciable gain in resolving

power. If the slit be widened the illumination increases almost in

direct proportion of the slit-width and at first the loss in purity is not

serious, but when the width becomes equal to l’&Xfjd the intensity

is about 11 % short of what it would be with an indefinitely wide slit

and there is a loss of 42% in purity. Beyond that point very little

is gained in illumination and much is lost in purity by a further

widening of the slit. The general conclusion to be drawn from the
table is that for weak sources of light the spectroscope should be

designed so as to give about twice the required resolving power and that

* For a more complete Table and treatment of the subject see “ The Optics of

the Spectroscope,” Astrophysical Journal, Yol. 21, p. 197 (1905).

11—2
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the slit may then be opened so as to have a width somewhat less than

2 \ffd. A practical method of opening the slit to that width is based

on the consideration that when a parallel beam of light falls on the

slit in the direction of the axis of the collimator, the central diffraction

image just covers the collimator lens when the width of the slit has the

required value.

Although our test of resolution contemplates eye observations, the

conclusions we have drawn may be to a great extent applied to cases

where either photographic or bolometric methods are used, especially

as regards the comparison with each other of the powers of different

instruments. When objective methods are used, greater illumination

may be secured by reducing the focal length of the lens which forms

the ultimate image, but on the other hand there is generally a limit

below which the linear scale of the final image cannot be reduced so

that the best conditions for subjective and objective methods of

observations do not differ so much as might at first sight appear.

Full resolving power is only "obtained if the collimator lens is

completely filled with light. Hence when the slit S is wide, and
the source of light (L

)

is narrow, it is necessary to interpose a lens

Fig. 110.

(A) as shown in Fig. 110; the angular

aperture of the lens A as seen from the slit

need not, in this case, be larger than the

angular aperture of the collimator lens. If

the diameter of the lens A is increased without

changing its focal length, the image of L on the slit plate becomes

brighter, but the increase in light is caused by rays which do not

pass through the collimator lens at all, and are therefore useless. When
the slit is made so narrow that full or nearly full resolving power

is obtained, diffraction will cause the light inside the collimator to

spread, so that in the arrangement as drawn in the figure a good

deal of light is lost. To make up for this, the diameter of A should

be increased, when some of the light which with a wide slit falls on

the sides of the collimator tube, will be diverted so as to pass through

the collimator. In the observation of star spectra, the telescope lens

performs the function of the condensing lens A
,
and its aperture being

fixed, there is necessarily a not inconsiderable loss of light due to

diffraction, when full resolving power is obtained. Diminishing the

focal length of the collimator does not help here, because this would

have to be accompanied by a narrowing of the slit, if the resolving

power is to be maintained. Hence, as in other cases where total light

is a consideration, it becomes necessary to build the spectroscopes so

as to have a resolving power twice that actually required, and to open

the slit to a width of about 2\f/d.
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It should be noted that if a star image were perfectly steady and

undisturbed by irregular atmospheric refraction, a star spectroscope

should give full resolving power without any slit at all. Indeed in

this case, the slit could only deteriorate, but never improve the

definition. The tremors of the star images, due to atmospheric fluc-

tuations, are however sufficiently serious to render a slit desirable,

when high resolving powers are required.

The above treatment of the subject is based on the consideration of

spectra of bright lines, and cannot without modification be applied to

the absorption phenomena exhibited in the spectra of sun and stars. It

would lead too far to enter into this part of the subject here, but one

example of the difference presented by emission and absorption spectra

may be pointed out. A perfectly homogeneous radiation could never

appear as a dark line in an absorption spectrum, for the reason that

an indefinitely narrow gap between two bright surfaces could not be

detected by any instrument of finite resolving power.

85. Aberrations. To obtain the maximum concentration of

light at a point the wave-fronts should be perfect spheres with that

point as centre, but owing to defects in the working of the surfaces, or

insufficient homogeneity of the material, perfection is never attained.

From the point of view of the wave-theory of light, the so-called optical

“aberrations” are dependent on the deviations of the wave-fronts from

the ideal spherical shape. The amount of deviation compatible with

sensibly perfect definition has been discussed by Lord Rayleigh*, who
finds that if the discrepancy in phase at the focus between the extreme

and central rays of the wave-front does not exceed a quarter of a wave-

length, the image does not suffer appreciably. At that limit, a rapid

deterioration of definition begins. Lord Rayleigh also gives the

following important applications of this result. If in a telescope

supposed to be horizontal, there is a difference in temperature between

the stratum of air along the top and that of the rest of the tube, the

wave-fronts are distorted along the top of the tube. The final error

of optical length of the extreme rays is IS/x, where l is the length of the

tube and S/x the alteration in refractive index. At ordinary tempera-

tures Sfx is connected with St the change in temperature, by the

approximate relation

Sfx =-11 St x 1O
-0

.

If the error in optical length is a quarter of a wave-length,

IX=1'1 IStx to-6
,

ISt — 12 if A. = 5‘3 x 10-5.

Thus a change of temperature of 1° becomes appreciable when the

length through which the temperature difference extends is 12 centi-

* Collected Works, Vol. i. p. 428.
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metres. In a telescope tube 12 metres long, the average temperature

of the air through which the different rays pass should not differ by

more than O'Ol degrees.

As a second example, also given by Lord Rayleigh, we may take

the accuracy which is required in the working

of optical surfaces. If AC is the optical surface

and if through imperfections in the working any

portion of it is raised so as to occupy the

position DF, the error in optical length is

(Fig. Ill)

QQ' - QS= 2BD cos <f>,

where is the angle of incidence and S the foot of the perpendicular

from Q
1

to the ray reflected from Q. Hence the deviation BD from

the plane AC should not; over any considerable portion of the

surface, exceed |-A sec <£, or for normal incidence, one-eighth of

the wave-length.

Our result applies to the case where no change of focus is allowed

in the observing telescope, but aberrations, in the sense here intro-

duced, may often be corrected for by such change of focus as e.g. when

a surface intended to be plane is slightly concave or convex.

Students may, as an example, work out the greatest admissible

width compatible with perfect definition of a spherical mirror, when

rays parallel to the axis fall on it.

86. The formation of images without reflexion and re-

fraction. Pin-hole Photography. An elementary experiment in

Optics consists in showing tbe rectilinear propagation of light by

projecting an image on a screen, the image being formed by rays which

have passed through a narrow aperture. Lord Rayleigh has shown

that for small apertures such an opening acts as well as a lens, and the

discussion of the matter is here given in his own words :

—

“The function of a lens in forming an image is to compensate

by its variable thickness the differences in phase which would

otherwise exist between secondary waves arriving at the focal point

from various parts of the aperture. If we suppose the diameter of the

lens (2r) to be given, and its focal length /gradually to increase, these

differences of phase at the image of an infinitely distant luminous

point diminish without limit. When /attains a certain value, say/i,

the extreme error of phase to be compensated falls to £A. Now, as

I have shown on a previous occasion*, an extreme error of phase

amounting to ^A, or less, produces no appreciable deterioration in the

definition
;
so that from this point onwards the lens is useless, as only

improving an image already sensibly as perfect as the aperture admits

* Phil. Mag . Nov. 1879.
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of. Throughout the operation of increasing the focal length, the

resolving-power of the instrument, which depends only upon the

aperture, remains unchanged
;
and we thus arrive at the rather

startling conclusion that a telescope of any degree of resolving-power

might be constructed without an object-glass, if only there were

no limit to the admissible focal length. This last priviso, however,

as we shall see, takes away almost all practical importance from the

proposition.

“ To get an idea of the magnitudes of the quantities involved, let us

take the case of an aperture of ^ inch (inch = 2 ‘54 cms.), about that of

the pupil of the eye. The distanceA ,
which the actual focal length

must exceed, is given by

so that fi - 2

r

2
/X.

Thus, if X = X o r = T\>, A = 800.

“ The image of the sun thrown on a screen at a distance exceeding

66 feet, through a hole 4 inch in diameter, is therefore at least as well

defined as that seen direct. In practice it would be better defined, as

the direct image is far from perfect. If the image on the screen be

regarded from a distance /i, it will appear of its natural angular

magnitude. Seen from a distance less than/x it will appear magnified.

Inasmuch as the arrangement affords a view of the sun with full

definition and with an increased apparent magnitude, the name of a

telescope can hardly be denied to it.

“As the minimum focal length increases with the square of the

aperture, a quite impracticable distance would be required to rival the

resolving-power of a modern telescope. Even for an aperture of four

inches /i would be five miles.”

Returning to the subject in a later paper, Lord Rayleigh discusses

its application to the so-called pin-hole photography, in which the lens

of a camera is simply replaced by a narrow aperture. If this aperture

is too small, the image loses in definition owing to the spreading out of

the waves, and on the other hand it is clear that no image can be

formed, when the aperture is large. There must therefore be one

particular size of the opening which gives the best result. The original

paper* should be consulted, in which the question is treated both

theoretically and experimentally. The best result in general is found,

when the aperture as seen from the image includes about nine-tenths

of the first Fresnel zone, so that if a is the distance of the object,

b that of the image from the screen and r the radius of the opening,

„a + b

ab
•=‘9X.

* Collected Works, Vol. nr. p. 429.
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86 A. Photometry. The methods and appliances used in com-

paring the intensities of two sources of white or nearly white light are

described in experimental text books and lie outside the range covered

by this treatise. When the radiations which are to be compared with

each other differ appreciably in colour, difficulties arise in the selection

of a common standard unless the thermal effects are sufficiently great

to allow the intensities to be measured directly. Nicholson and Merton

have shown how these difficulties can be overcome. When the inten-

sities of two nearly homogeneous radiations differ only slightly in

wave-length, the method first used by Merton* is sufficient. It

consists in transmitting the light before it enters the spectroscope

through a neutral-tinted wedge of glass mounted so that the lines of

equal thickness of the wedge are at right angles to the length of the

slit. The spectrum of a luminous gas then appears to consist of lines

bright at the points corresponding to the thin end of the wedge and

gradually falling off in intensity. If be the intensity of a certain

line it is reduced to I—Ix er
KXx in passing through a thickness x, of the

wedge. Similarly for a second line I—I2a~
KX -

2
. If two of the resulting

intensities I are the same in both cases: log (I2/1^ = k (x2— x^. Hence

the relative intensities of the two radiations can be determined if k be

known and x2 — Xi determined by the observation.

Before the method can be applied to lines in different parts of the

spectrum several limitations must be removed. In the first place the

absorbing power of the wedge depends on the wave-length. To deter-

mine k for a line having a given wave-length, equal exposures are taken

with intensities of the incident light reduced in a known proportion +.

Let li and l2 be the measured lengths of the lines, the incident light

being I and al respectively. If a be the angle of the wedge, m the

magnifying power, and Ic denote the intensity at which a line is just

photographically visible, we have:

log aljlc = k/jm-1 tan a
;

log IjIG — nl.jrr
1 tan a.

Hence log a = k.(Ix — /2) m~
x tan a.

The last equation determines k.

It is more difficult to correct for the differences in the photo-

graphic sensitiveness in the different parts of the spectrum. The
device used for the purpose by Nicholson and Merton was to take a

photographic record of the continuous spectrum of the positive crater

of the electric arc. This has a definite temperature not differing much
from 3650°. Assuming that the radiation corresponds to that of a

perfectly black body, the varying sensitiveness of different photo-

* Proc. Roy. Soc. A, Vol. xcxi. p. 322.

f Phil. Trans. A, Vol. ccxvii. p. 237.
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graphic plates may be determined by comparing the record of the

photographic intensity of the spectrum obtained with the theoretical

radiation of a black body.

86 b. Measurements of the Diameters of Stars. We may
conclude this chapter with a short account of the remarkable results

which Michelson has obtained by applying interference methods to

increase the resolving powers of telescopes. We have seen (Art. 73)

that the image of a luminous point formed by an ordinary lens consists

of a central disc surrounded by alternating bright and dark rings

and that the radius of the disc, on which the resolving power depends,

is \'22Xfj2R, where f is the focal length and 2

R

the diameter of the

lens. If the lens be covered with a diaphragm having a horizontal

aperture a and a vertical height b, which we shall take to be small,

the image of a point consists of vertical diffraction bands of diminishing

intensity as their distance from the central band increases. Equation 5,

Art. 76, shows that the distance of the first dark band from the centre,

obtained by giving to a the value 7r, is Xf/a. Comparing rectangular

and circular apertures, the width of the opening of one being equal

to the diameter of the other (a = 2R), we find that the rectangular

aperture has a slightly greater resolving power. This may be still

further increased by blocking out the central portion of the lens, and

Michelson, pushing the advantage to its limits, covered

5x i° the lens almost completely, leaving only an aperture of

A small dimensions at each of the two ends of a diameter.

/ \ A lens covered in this way cannot of course be used

/ \ for ordinary purposes of seeing, the resolving power
/ \ being confined to one direction only.

/ \ In describing the distribution of light in the image

jpl \q of a source of light formed in this manner we shall
"

Z r̂ — -W imagine the axis of the telescope to be in a horizontal

\ / position and the line joining the two openings to be also

\ / horizontal.

\ / In Fig. 11 la let 0 be a luminous point. If F be

\ / the geometrical image of 0 formed by a lens covered

V by a diaphragm, having small apertures at P and Q, an

2? q interference pattern will appear in the focal plane of

Fig. ill a. the lens with F as centre. The resultant amplitude
is that found in Art. 30 for two luminous sources

vibrating in the same phase. At a distance x from F, the amplitude
is proportional to cos kx, where « = ira/fX. The first minimum occurs

when x=/X/2a. It is convenient to use a unit of amplitude such
that the average illumination in the plane considered is unity. The
illumination due to the interfering sources is then 2 cos2

kx.
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If a second luminous point be placed at S, its geometrical image

being G, the previously adopted test of resolving powers leads to the

conclusion that the two sources of light will be just resolved when
FG =fk/2a. The resolving power would therefore be just double that

found for a rectangular aperture having a horizontal width a and

nearly two and a half times as great as with a circular aperture. In

comparing the efficiency of fhe two arrangements we must take account

of an important difference in the manner in which the resolution of

two closely adjacent sources of light is tested. In ordinary telescopic

vision we are guided by an illumination curve such as that represented

in Fig. 104 and recognize the resolution by a slight^diminution of the

luminosity between two not very well defined maxima of light. The
interference method gives us a much more delicate criterion, the

resolution depending on the disappearance of a set of fringes. If £ be

the distance between F and G the illumination of the screen due to

the combined sources is

I- 2 cos
2 kx + 2 cos

2 k (x + £) = 2 + cos 2*x + cos 2* (x + £)

;

the illumination is therefore uniform and the diffraction pattern dis-

appears when k£ is an odd multiple of a right angle. There is of

course considerable loss of light, only a small part of the lens being

used, but this is more than counterbalanced by the greater facility

of observation and measurement. Michelson judges that with equal

apertures the interference method increases the resolving power about

ten times.

The most important application of the interference method is that

which leads to the measurement of the angular dimensions of an

object so far away that even the most powerful telescopes cannot

discriminate between it and a source of light concentrated in a point.

Let the vertical lines in Fig. Ill b represent the maxima of light

in the focal plane of a telescope, when the light from a point-source is

Fig. ill b.
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transmitted as in the previous case through two small apertures at a

distance a from each other. Each point of the luminous object, which

we may take to be a star, produces identical patterns slightly displaced

relatively to each other, and we must find the resultant illumination

due to each surface element of the surface. Let S be the geometrical

image of the luminous source having F as centre. If G be the point

at which the illumination is required, and we take points D and C
such that DG = FC, it is clear that the luminosity at G due to the

interference pattern having its centre at C is the same as the effect of

the luminosity at D belonging to the pattern having its centre at F.

If this reasoning be applied to all points G of the geometrical image

of the star it follows that the total illumination at G is equal to the

average illumination in the central interference pattern within a circle

having G as centre and a radius p equal to that of the geometrical

image of the star. Hence

I= (irp
2

)

- 1

/JXcos
2 Kxdxdy,

where K is a quantity depending on the variations in the light emitted

from different parts of the surface of the star. For the sake of sim-

plicity we shall take the star disc to be circular and K to be constant

and equal to unity.

If we put x — x0 + £, where £ is the horizontal co-ordinate measured

from G and x0 the horizontal distance between F and G, we obtain

for the measure of the illumination

f+P f+ 3/1

I= (V2

)
-1

/ /
COS2

K (x0 + £) d£dy,

where y = s/p
2 — £

2
.

Performing the integration with respect to y, the illumination becomes

(7rp
2)- 1

( s/p* - £
2

{ 1 + cos 2k (x0 + £)} d£
J -p

= (ny)
2

)
-1

f s/p
2 — £

2
(1 + cos 2kx0 cos 2k£) d£

;

J -p

the term omitted on the right-hand side does not affect the result,

because it has opposite signs for equal positive and negative values

of £. The integral f s/p2 -£ 2 d£ represents half the area of the circular
J -p

disc, so that we may write for the illumination at a distance x from the

centre of the geometrical image,

1=1 + 2 (yrp
2

)
-1

cos 2xx f (s/p2 — £
2
) cos 2n£d£.

J -p
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The integral can now be expressed, in terms of a certain function

called the Bessel function of the first kind and generally denoted

by J]. When expressed in a series of ascending powers the function

takes the form

J , s z z* zs z7^ ~ 2~¥71 +
¥. 42

. 6
_

2
2

. 42
. 6

2
.

8

+

The integral occurring in the equation for I is irp (2k)-
1 Jx (2*p), and the

illumination at a point x becomes

1= 1 + (
Kp

)

-1
(cos 2kx) Jx (2«p).

When p is very small so that only the first term of the series needs to

be taken into account the expression for the illumination reduces to

I-( 1 + cos 2kx) = 2 cos2
kx,

which, as it should be, is equal to that found for a single luminous

point.

The function Jx fluctuates between positive and negative values and

is the same as that which determines the distribution of light of a point

source focussed by a lens having a circular aperture. When Jx is zero,

the illumination is uniform and equal to unity. The numerical values

of z, etc., for which the function Jx vanishes, are obtained from the

numbers given in the column headed m of Table VII, Art. 73, by multi-

plication with tt. We are now in a position to find a connexion between

the dimensions of the dark rings surrounding the image of a luminous

point and the distance (a) between the two openings at which the

diffraction bands vanish. This distance is given by zn = 2Kp, if za is one

of the numbers for which the function vanishes, or substituting the

value of k, we derive for the angular radius of the star

p =fXzj2na.

The radii of the dark rings as found by Airy and Lommel are*

r =fXz^Iirll,

where r is the radius of the circular opening. Comparing the two last

equations we derive the following interesting proposition

:

The resolving power of a lens of radius R has the same resolving

power as Michelson’s apparatus for measuring the diameters of stars,

having mirrors which are a distance R apart.

It will be noticed that the distance between the two openings is

equivalent to the radius—not to the diameter—of the lens
;
this illus-

trates the greater power of the interference method. The observations

# Kayleigh, Collected Works
,
Vol. hi. p. 88.
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are conducted by altering the interval between the two mirrors sym-

metrically so as to keep them at equal distances from the centre.

A further and most important increase of resolving power has been

obtained by Michelson by lengthening the base line from the ends of

which a star is observed. In the arrangement that has been described

this base line is the distance between the two openings covering the

lens or mirror of the telescope. It was a brilliant idea to increase it by
receiving the light on two mirrors that are further apart, and bringing

it into the telescope with the help of two additional mirrors. The diagram

(Fig. Ill c) will illustrate the disposition of the mirrors and the passage

of the light. The distance between P and Q, the two openings in front

of the lens, determines the interference pattern and remains constant

during the observations, being unaffected by the positions ofM± and Af2 .

On the other hand, the distance between these two latter mirrors deter-

mines the length we have designated by p, and which no longer is the

radius of the geometrical image of the star in the telescope, but that

which a lens of diameter MjM2 would give. This may be demonstrated

by a method depending on Fermat’s principle, which we have already

used on several occasions. If by any optical arrangement a beam of

light AB (Fig. 111c?) be reduced in width so as to become equal to ab
,

and AB be turned through a small angle, then ab will be turned through

an angle greater in the ratio AB/ab. For if the new wave-front be AC,
the optical length from B to b is reduced by BC. In order to keep the

optical length from C to c equal to that from A to a, which is the con-

dition that ac shall be the new wave-front, it is necessary that be = BC
;

the angle bejab is in that case greater than BC/AB in the ratio ABjab.

It is assumed here that the media in which the wave-fronts AB and ab

lie have the same optical properties. In the case now under con-

sideration AB and ab are not two wave-fronts, but they are points
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on two rays emanating from the same luminous point and such that

the phases at A and B are the same. The reasoning therefore holds

good, and our previous equations may be retained if a denotes the

distance MiM2 .

In the first observations made with the arrangement illustrated in

Fig. Ill a, a reflecting telescope having a parabolic mirror of 100 inches

aperture was used, and the distance between the openings P and Q was

varied until the diffraction bands disappeared. The distance between

Fig. ill d.

close double stars could thus be measured. When the second arrange-

ment (Fig. Ill d) was introduced the distance between the openings

P and Q was not altered during the observations, but was reduced to

45 inches so as to give the interference pattern a spacing of '02 mm.
easily visible with a magnification of 1600. The mirrors M1} M2 were

attached to a beam which allowed a separation of 20 feet, so that the

efficiency of the appliance was more than doubled as compared with the

possible separation of 100 inches in the previous arrangement. On a

first trial it was found that with the mirrors 121 inches apart the fringes

of a Orionis were invisible. It is estimated from this that the angular

diameter of the star is about 0"047, and taking account of the measured

parallax of ”0018, its linear diameter may be calculated as being 240

million miles, or slightly less than the orbit of Mars. Though it may
be observed that the interference pattern is not the same for different

wave-lengths, this does not seem to have interfered seriously with the

observations, and in the calculations the effective wave-length for a

Orionis was assumed to be 5700A.

86 c. Historical. John William Strutt, Third Baron Rayleigh

(born Nov. 12, 1842; died July 1919). The late Lord Rayleigh’s con-

tributions to Optics were numerous and important. His name occurs

almost in every section of this book, which is dedicated to him, but

it may be more specially associated with this chapter, because he
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introduced clarity and precision into the theory of optical instruments.

The erroneous ideas on the resolving powers of prisms and gratings

prevalent at the time were finally disposed of by the simple reasoning

through which he established the criterion governing the separation of

different wave-lengths in Optics as well as in Acoustics. His papers

on the nature of light are equally important, and in particular his

remark that every homogeneous radiation is necessarily polarized

may be quoted because it has not always received the attention it

deserves.



CHAPTER VIII.

THE PROPAGATION OF LIGHT IN CRYSTALLINE MEDIA.

87. The Ellipsoid of Plane Wave Propagation. Ellipsoid

of Elasticity. It has been shown in Chapter il, Art. 12, that the

velocity of propagation of a distortional wave in an isotropic medium

is Jnjp, where n is the resistance to distortion. If the medium is not

isotropic, the coefficient n will depend on the direction of the displace-

ment. In that case, a plane wave may be propagated with different

velocities according to the direction of the vibration. Fixing our

mind on a wave-front parallel to a given plane, there must always be

one direction for which n has a maximum value n1} and one for

which it has a minimum value n2 . There is therefore a maximum

and minimum velocity of propagation Jnjp and Jn2/p respectively

for every plane with two directions of vibration corresponding to

these two velocities. If the displacement is in neither of these two

directions, it might seem at first sight that the wave would be

propagated with some intermediate velocity. This is not, however,

found to be the case either analytically or by experiment. What
happens is that the wave splits into two wave-fronts proceeding

with the velocities Jn^p and Jn 2/p. If we change the direction

of the plane, the two velocities in general change also. It may
bo proved that the two directions of displacement corresponding to

the minimum and maximum coefficients of distortion, are always at

right angles to each other. If the direction of displacement be

confined to one or other of these two directions, a plane wave may
be propagated as a single plane wave. But in the general case, the

displacement must be decomposed into its components in the two

directions for which a single plane wave propagation is possible. The

following construction connecting the velocities of the plane wave

propagation in different directions, though originally suggested by

theoretical considerations, should at the present stage be considered

simply as a representation of experimental firets

.
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Take some fixed point 0 (Fig. 112) in the crystalline medium and

imagine planes drawn through the point. In each plane take two

lines OPi and OQi which coincide with the two possible directions of

vibration. If vx be the velocity of the plane wave for a direction of

vibration OPx and v2 for a direction OQlt take the

P\> Ps, Qu Qz, so that OP1 = OP2 = V/v1 ;

r

'

\ OQi = OQ2 = Vjv2 , V being the velocity of the wave

Jq, o M propagation in vacuo*. If the plane through 0 be

p»j altered in direction and the points P and Q marked

li->
off for each, it is found that these points lie on an

)g
' ellipsoid, which may be called the ellipsoid of plane

wave propagation. It is also found that the points P and Q lie at the

ends of the semiaxes of the central sections of this ellipsoid. If the

ellipsoid is given, we may therefore find the direction of vibration and

the corresponding velocities of waves parallel to any given plane, by

drawing the central section which is parallel to that plane. The semi-

axes of the ellipse in which the section cuts the ellipsoid give the

directions of vibration, and the velocities are inversely proportional to

the semiaxes.

Fig. 112.

Let the equation of the ellipsoid be

aV + by + cV = V2
(1),

the quantities a
,

b, c, being in descending order. To simplify the

equation, take the unit of time to be the time which a wave in vacuo

takes to traverse unit distance, so that we may write V=l. For x = 0,

we obtain the intersection of the ellipsoid with

I the plane of yz, which is an ellipse having 1jb

.

—

an(j \jc as semiaxes. Hence a wave-front

may be propagated in the direction of the

1
axis of x either with a velocity b or with a

^ velocity c, the direction of vibration in the

113 former case being the axis of y, and in the

latter the axis of z. Similarly a and c are

the velocities of propagation for a wave-front parallel to the plane xz,

and a, b the velocities for a plane parallel to xy. The velocities a
, b

and c are called the principal velocities. Fig. 113 illustrates how a

plane wave separates into two, the directions of vibration in the two

being at right angles to each other.

We proceed to calculate, in accordance with the general indications

given above, the velocities of propagation for any wave-front inclined

to the principal axis of the ellipsoid (1). It is required to find the

* We might also take OPx = V/v^ and OQ x
~ V/v x and fit the observed phenomena

equally well, but it is convenient to make our choice at once so as to fit in with the

view that the direction of vibration is at right angles to the plane of polarization.

S. 12
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Fig. 114.

direction and magnitude of the principal axes OP and OQ of the

intersection of the ellipsoid (1) by a central plane which is defined

by the direction cosines l, m, n, of its normal ON,
Fig. 114.

Let the length of the semiaxis OP be p and

construct a sphere of radius p having its centre

at 0. The sphere will pass through the point P
and through a corresponding point P' at the

opposite end of the same diameter, but it cannot have any other point

in common with the ellipse, because the ellipse can only have one

diameter equal in length to one of its axes. The sphere intersects

the ellipsoid in a curve PS and a corresponding one through P'.

These curves, which belong to the class called sphere-conics, must

touch the ellipse at P and P'. The same reasoning holds good if all

dimensions are diminished in the same ratio. If therefore a cone be

constructed having 0 as vertex and passing through the sphere-conic

PS, this cone cannot intersect but must touch the plane of the section

OPQ along the diameter PP\
The equation of the cone is obtained by combining the ellipsoid

a2x2 + b
2

y
2 + c

2z2 = 1,

and the sphere x2
+ y

2 + z2 = p
2

,

in such a way as to represent a cone passing through the origin. The
resulting equation must therefore be homogeneous in x, y. Multiplying

the first by p
2 and subtracting, we obtain

(ia2
p
2 —

1) x
2 + (

b
2
p
2 - 1) y

2 + (c
2
p
2 — 1 ) z

2 - 0,

and as the velocity of the plane wave vibrating along OP is 1/p,

(«
2 - a2

) cc
2 + (y

2 — b
2

) y
2 + (y

2 — c
2

) z
2 = 0 (2).

We now introduce the condition that the direction cosines of the

normal to the section OPQ coincide with the direction cosines of

the plane which is tangent to the cone, the line OP being the line

of contact. If x, y, z be now the coordinates of P we obtain in the

usual way
Dl = (y

2 — a2
) x\

Dm = (y
2 — b2

) y l (3),

Dn — (y
2 — c

2

) zj

and by substitution in (2)

l
2 m2 n2

, .

(<)•+ + 0
(v2 - a2

) (v2 - b2

) (y
2 - c2

)

This important equation is of tng second degree in v2 and has two

positive roots. There are therefore )two possible values of v which



87
, 88] PROPAGATION OF LIGHT IN CRYSTALLINE MEDIA 171

satisfy the equation. By getting rid of the denominator and sub-

stituting m2 — 1 — (l'
2 + n2

), the equation may be written

if — \{a
2 + c

2
) - (a2 — b2

) l
2 — (b2 — c

2

) w
2
] v

2

+ \a2 c2 — (a
2 — b2

) &l
2 - (b

2 — c
2
) a

2n2

\ = 0...(4a).

Having found v2 we may find the direction cosines of the line of

vibration OP for a given wave-front by substituting in (3) for x, y, z

their equivalents p cos a, p cos/?, p cos y. We have then, with a

different meaning of D,

where D is determined by the relation a2
+ (3

2 + y
2 ^ 1, which gives

1 _ l
2 m2 n2

D2
=

(v
2 - a2

)
2
+

(v
2 - b2

)
2 +

(v
2 -c2

)
2

'

With the unit of time adopted, the velocity of light in vacuo is

unity, and 1/a, 1/b, 1/c, the reciprocals of the principal velocities,

measure quantities which in an isotropic medium would correspond

to the refractive index. These quantities are therefore called the

principal refractive indices. Denoting them by p-j, p2 , p-s, we may
write the equation of the ellipsoid (1) in the form

/V Pi
1 .

The coefficients of elasticity, which measure the resistance to

distortion in the principal planes, are proportional to a2
, b2

,
c
2

respectively, so that these constants are intimately connected with

the elastic properties of the medium. The ellipsoid (1) has therefore

been called the ellipsoid of elasticity (see also Art. 104). In a homo-
geneous medium, pi = p^ = ps ,

and the ellipsoid of elasticity becomes a
sphere, having a radius numerically equal to the refractive index.

88. The Optic Axes. Every ellipsoid has two circular sections

passing through that principal axis which is neither the largest nor
the smallest. It follows that there are two directions in which a
plane wave-front has only a single velocity. These two directions

are called the “ optic axes The radius of the circular section is

l/b, and putting p = 1/b in the equation (2) of the cone, it reduces to

(a
2 — b

2

) x
2 + (c

2 — b2

) y
2 = 0.

This is the equation of the two planes which contain the two circular

12—2
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sections. The two directions of single wave velocities are the normals

to these planes, so that

(5)

are the direction cosines of the optic axes.

When a wave is propagated in the direction of one of the optic

axes, the direction of vibration may be anywhere in the plane, as

in the circular section, any direction may be considered to be an axis.

89. Uniaxal and Biaxal Crystals. In general a crystal has

two optic axes and is then called “ biaxal.” If two of the principal

axes are equal to each other, there is only one optic axis, which is the

axis of as if b = c, and the axis of z when a = b. The crystal is then

said to be a “ uniaxal ” crystal.

The ellipsoid of elasticity for uniaxal crystals when a = b, is the

spheroid

a? (a? + if) + cV = 1

and the equation (4) for determining the velocities of plane wave

propagation becomes, writing 0 for the angle between the optic axis

and the normal,

sin
2 0 cos2 6

a2 — v'
+

c
2 - v2 3

or v
2 = c

2
sin

2 6 + a2
cos

2
0.

Hence the velocity depends only on the angle which the normal to the

wave-front makes with the axis of revolution of the spheroid.

90. Wave-Surface. The passage of waves through crystalline

media is completely determined by the equation we have obtained for

the propagation of plane waves, but it is often convenient to base our

investigations on a surface which is the locus of equal optical distances

measured from a point as centre. Such a surface, according to the

definition of Art. 18, is called a “Wave-Surface.” Its relation to the

optical distance between parallel wave-fronts as deduced in the last

paragraph may best be seen by applying Huygens’ principle. Let

a plane wave (Fig. 115), WF, be propagated upwards and with points

P2 , Ps> etc. as centres construct the surfaces of equal optical

VY' Ri R; f»

W P, Rg p
Fig. 115.

distance, corresponding to unit time, i.e.

the wave-surfaces ST and S'T'. The
furthest distance to which the wave-front

WF can have gone in the time is the

tangent plane WF’ to all the wave-
surfaces, and by Hujrgens’ principle, as explained in Art. 16, this plane

will actually be the position of the wave-front after unit time. The
lines which join the centres of disturbance P1} P2 ,

P3 ,
etc. with the
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points of contact B1} J?2 , Rz, etc. of the wave-surfaces and wave-front,

are the lines of shortest optical distance between WF and W'F'.

These lines we have called the “ rays.” If the wave-surfaces are not

spheres, the rays are not in general at right angles to the wave-fronts,

and this is an important distinction between crystalline and isotropic

media.

If through any point P (Fig. 116), we draw a number of plane

wave-fronts, we may, from the results of the last article, construct the

ws ?'•
positions W^Fly W2P2 ,

WSFS ,
etc. of

these wave-fronts after unit time. Each
\y/

F2 wave-front must be a tangent plane to the

-F3 wave-surface drawn with P as centre.

Hence the wave-surface is the envelope of

Wi / ^ all the plane wave-fronts. Its equation
F5 may thus be obtained by a purely mathe-

£ matical process.

Fig. 116. The equation to the wave-front is

lx + my + nz = v (6),

where v is the distance travelled in unit time, which itself is a function

of l, m, n. Any point Q of the wave-surface is a point of intersection

of planes, differing from each other in direction by infinitely small

quantities. Hence a point x, y, z of the wave-surface must satisfy

(6) and also the equation obtained by giving to l, m, n, v small

increments ell, dm, dn, dv. Subtracting one of these equations from

the other it follows that

xdl + ydm + zdn = dv (7).

There are certain conditions to which the variations of the quantities

l, m, n, v, are subject. Thus

l
2 + m2 + n2 = 1

from which we derive

Idl + mdm + ndn = 0 (8),

and also as equation (4) continues to hold,

Idl mdm ndn „
+ -3— + -o

——z - Kvdv
v2— a2 v

2 — b2
v~ — e

2 (f),

where K= P
+

m n‘

(y
2 - a2

)
2

(y
2 - b

2

)
2

(y
2 - c

2

f

As there are only two independent parameters of the plane, e.g.

I and m, it must be possible to express dn and dv in terms of dl and

dm. Two equations are sufficient for this purpose, and of the three

equations (7), (8), (9) only two can be independent. To express the

condition that one of these equations may be obtained as a consequence

of the two others, we multiply (8) by A and (9) by B

,

and add.
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Equalizing the factors of dl, dm, dn, and dv, in this combined equation,

with the corresponding factors in (7), we find

l '

x = Al + B

y =Am + B

z = An + B

(V - a2

)

m
lf—b2

n
v2 — c

2

.(10),

BKv = 1 (11).

Multiplying (10) by l, m, n, respectively, and adding, we obtain, with

the help of (6) and (4),

v=A (12).

Squaring and adding the equation (10), and writing r2 for x2 +y2 + z2
, the

term containing the product AB disappears in consequence of (4) and

we obtain

:

r2 = A 2 +B2K.

With the help of (11) and (12) this gives B:

B = v(r2 -v2
) (13).

The first of equations (10) may now be written

B + A(v2 -a2
) r

r*-

a

2

,X = 5 5 i = —
5 VI.

v2— a2

Hence

Similarly

x vl X

v2 — a2

— vl\
r2 - a2 v2 -a2 r2— v‘

l
'

y vm
r2 - b

2 v2 -b2

vn

y - vm
r2— if ’

z — vn

r2 -c2 v2 — c
2 ?•- — v,2

.(14).

Multiplying these equations by x, y, z, respectively and adding, the

quantities l, m, n disappear owing to the relation (6) and we obtain

or f +
z?

f2 — b
2 r2— c

= 1 .(15).

This is one form of the equation of the wave-surface. Another form is

obtained by multiplying both sides of (15) by r2
,
and then subtracting

x2 + y
2 + z2 from the left-hand side, and r2 from the right-hand side.

This leaves

afx2 b2y
2

<fz
2

f‘ — a2 + r2 — b2
+
f2 — c

2 (16 )>

a form which is usually more convenient than the former, though
analytically identical. Getting rid of the denominators, we find

(f _ If)
(
r* _ (f) „f + (r

2 _ a>) _ C2) b
2

y
2 + (,.2 _ a,)

(
r2_^ (f = o.
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Multiplying out and dividing by the common factor r2 we find

r2 (a2x2 + b
2

y
2 + c

2z2

)
— a? (b

2 + c
2
) x

2 — b
2
(c

2 + a2

) y
2

— c
2

(a
2 + b2) z

2 + a26V = 0 (17).

This is an equation of the fourth degree.

91. Ray Velocity. The radius vector of the wave-surface, being

the distance through which a disturbance may be considered to have

travelled in unit time, measures the velocity along the ray. Calling

s the ray velocity, while v is the velocity of plane wave propagation,

Fig. 115 shows that if £ be the inclination of the ray to the wave

normal, v = s cos £, or if X, /a, v be the direction cosines of the ray,

v = s (IX + mu + nv) (18).

Equation (16) may serve to connect the direction X, /a, v with the

velocity s. Writing s for r and using x : y : z - X
: fx : v, we find

a2X2
b
2
t*

2 cV
s
2 - a2 +

s
2 - b2 +

s
2 — c

2 (19).

This equation becomes identical with (4) if we write 1/s for v, and 1/a,

1/b, 1/e, for a, b, c respectively and identify l, m, n with X, /a, v. This

suggests the following construction for obtaining ray velocities similar

to that which holds for the wave velocities. Take the ellipsoid

a?
—

2
+

a1

y'+- = i
b2

c
2

This ellipsoid has been called the reciprocal ellipsoid. Its semiaxes

are equal to the principal velocities. The semiaxes of any plane

central section then measure the two possible velocities of rays which

are at right angles to the section. The proof of this proposition

follows from a reasoning identical with that by means of which (4) has

been obtained.

92. Relations between rays and wave normals. The projec-

tions of the ray on the three coordinate axes are sX, s/a, sv, and we may
substitute these values for x, y, z, in equations (14). We then obtain

sX _ vl \

s
2 -«2 v2 — a2

S/A

J^b2

vm
tf^-b2 (20)

sv vn

X
:
/a : v — a (s

2 — a2

) :
(i (s

2 - lr)
: y (s

2 - c
2
).and
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Squaring and adding, we find

:

X2
i

^
,

v2
1

Us2 - a2

)

2
(s

2- b2f (s
2 - c

2

)

2J

_. 2 r p m2 n2
“I .“ v

l(v
2 - a2

)
2
+
{f - by (v

2 - c
2
)

2J ^ } '

We may also by a simple transformation of (20) obtain the three

equations

vl — s\ = s\

vm - s/x = s/a

vn — sv = sv

tf — s2

V —

a

2 *

v2 — s2

'J^b2 '

v2 — s2

'7^~C2 ’

.(22),

and by squaring and adding, find

«2 + s
3- 2vs (/A. + w/a+ nv) = s

2
(v

2 - s
2
)

2

+ ^-rrpp + •

Introducing (18) this equation reduces to

_j 32 r_ x2— + ^
i

v2 i ^
s
2 - V2 ~ r

I_(s
2 -ay (s

2 - by (s
2 - c

2
)*J

K h

and hence from (21)

1 # r P a* ft
1 r .

s
2 - v2

l(v
2 -ay {v

2 - by (v
2 - c

2

)

2
J

K } ’

Equation (23) may be used to calculate the ray velocity from the

velocity of the corresponding plane wave, while (22) is used when
the ray velocity is given and the wave velocity is required.

To determine the angle £ included between s and v, we may use either

cot2 £ =

s
2 -v2

or cosec
2
£ =

s
2 — v2

The former gives, in terms of the quantities defining the plane wave
propagation,

and the latter in terms of the quantities defining the ray propagation

4 r *9 ^ v2 “I

cosec £ s
|^2 _^ ^ ^ ^ _ c2)2J

.

The plane containing the direction of vibration OP, Fig. 117, and

the wave normal OH contains other vectors which are related to the

\ m2 n2

a2
)
2 *

( v
2 - b

2
)

2 +
(v

2 -cy

wave propagation.

o
Fig. 117.

To express analytically the condition that three

vectors should be in the same plane, we make
use of the well-known relation between the

direction cosines l, m, n, and £, yj, £, of two

lines which are at right angles to each other.

This condition is

l£ + mr]+ w£ = 0.
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If f, rj, £, is also at right angles to the vector A, /*, v,

A£ + /«7 + v£ = 0,

also £? + if + £*= 1.

Solving these equations, we find

i = mv— nfjL,

rj — nX — lv,

£=lfi — mX.

A third vector a, (3, y will be in the same plane with l, m
i
n and A, /u, v,

if it is at right angles to £, % £. Hence

a (mv - nfx.) + /3 (nX — lv) + y (1/jl — mX) = 0

is the required condition. If there is a linear relation between the

three vectors, such that

a=(7A + .iF7; f3~ CjJL + Frn
;
y—Cv-vFn,

the condition is obviously satisfied. Giving to the direction cosines

their previous meaning, we have according to (3)

Dl = (V - a2

)
a]

(24),

Dn = (v
2 — c

2

) yj

while (23) shows that D is equal to »Vs2 -

Also with the help of (20) and (24)

EX -{f — a2

) a

En = (s*-b‘2)/3
[

(25),

Ev = (s
2 - c

2
) y

where E is written for Dsjv, which is equal to s Js2 — v2.

Combining (24) and (25) we obtain the following linear relations :

EX- Dl- (s
2 - v2

)
a,

E/j. -Dm - {s
2— if) [3,

Ev - Dn = (s
2 — if) y,

which proves that the three vectors are coplanar. The “ray” therefore

lies in the plane which contains the wave normal and the displacement.

In Fig. 117 the wave normal and ray are indicated by the direction of

the lines ON and 08. We may now prove that the normal PT to the

ellipsoid of elasticity at the point at which the direction of the

displacement intersects it, lies in the same plane. At the end of the

radius vector OP draw the tangent PK to the ellipse of intersection.

If OP is a semiaxis, PK is at right angles to OP, and also to PT, the

normal to the ellipsoid. Hence PT and PO are in a plane which is at

right angles to PK, and hence also at right angles to OP', the second

semiaxis of the ellipse. OP' being the normal to the plane containing
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PT and PO, every line at right angles to OP' must lie in the same
plane. The normal to the section is such a line, hence PO, PT and
ON are in the same plane.

The direction cosines of the normal PT are proportional to a?x,

b2

y, c
2
z, if x, y, z are the coordinates ofP

,
and hence also proportional

to a\ IP(3, <?y.

The ray OS is at right angles to that plane section of the reciprocal

ellipsoid which has the ray velocity s as one of its semiaxes. If we
proceed exactly as in Art. 87 to find the direction cosines of the two

semiaxes of the ellipse which is at right angles to A, /x, v, we find by

equations analogous to (3) that they are proportional to

a2A/($2 - a2

), byi(s
2 -b2

), c
2
v/(s

2 -c2

),

and therefore by comparison with (20) proportional to a\ b
2
(S, c

2
y.

This proves that the semiaxis in question is parallel to PT. Let

OQ (Fig. 117) be that semiaxis. The normal to its tangent plane has

of Br f

direction cosines proportional to -g
,
jz, \ ,

if a', (S', y fix the direction of
a o c

OQ. From the ratio a'
: /S'

: y which has just been found, it follows at

once that OP is the normal to the tangent plane at Q.

The second semiaxis of the section of the ellipsoid of elasticity

passing through OP is coincident in direction with the second semiaxis

of the section of the reciprocal ellipsoid, which passes through OQ,

because in both cases the semiaxis must be at right angles to the plane

of the figure.

93. The direction of displacement. It has been proved that

the vectors OP, OS, and ON (Fig. 117) are in the same plane,

OP indicating the-direction of the displacement. As NS is in the

wave-front, the vibration rakes place in the direction NS, which is the

projection of the ray on the wave-front. The direction of vibration

cannot be observed, and the above statement involves therefore some-

thing that is theoretical and based on a particular assumption as

to the nature of light. That assumption has been introduced by the

manner in which the construction of Art. 87 has been carried out, as

already explained in the footnote to that article. If we wish to confine

our statements to facts capable of experimental verification, we ought

to say that the plane of polarization is at right angles to the projection

of the ray on the wave-front. The two ways of expressing the facts

are identical, if the direction of vibration is at right angles to the plane

of polarization.

The planes of polarization may be obtained in a simple manner

from the direction of the optic axes. The axes of an ellipse are

the bisectors of the angles formed by any two equal diameters, and
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Fig. 118.

the planes which are normal to the optic axes intersect the ellipsoid of

elasticity in a circle of radius 1jb. Hence if ON (Fig. 118) represents

jr the normal to the wave-front, andPP'QQ the ellipti-

/ 'X cal intersection of the wave-front and the ellipsoid,

A~ two lines OP, OP' which are at right angles to the

optic axes OH and OH' are of equal length 1Jb.

f J A plane through ON and OH intersects the ellipse
v>s—

/

' in a line OQ at right angles to OP, and a
p

plane through the normal and second optic axis
Fig. 118. intersects the ellipse along OQ' at right angles to

OP'. Hence OQ and OQ' are equal radii of the ellipse. It follows

that the planes of polarization are the two bisectors of the planes

which pass through the normal and two optic axes respectively.

The two Jilane waves propagated in the same direction have their

planes of polarization at right angles to each other, hut the two planes

of polarization belonging to a given ray are not at right angles to each

other unless the ray coincides with the wave normal. To prove this,

we take two directions of vibration a, /?, y, and a
x , (3,, yx ,

which

correspond to the same value of X, y-, v, the ray velocities being

s and sx ,
and the corresponding wave velocities v and vx . According

to (25) we have

Ek = (s
2 — a2

)
a

;
Eji = (s

2 — 6
2

) ;
Ev - (s

2 - c
2

) y,

^1
X=(.9

1
2 -a2)a

1 ; E^W-b*)^; Ex v= (sx
2 -c2

)yx ,

where E=s s
2 — v2 and E1 = sl \/s

2 - vx .

The cosine of the angle w between the directions of vibration is

COS a) = acq + + yy1}

and after substitution, the right-hand side is found to be equal to

EE, 17 x2
/x

2
v
2 \ / x2 N v2 Mmx r

! -s2
_

—I ; +
f-b* sx - a?

+
sx -b2

+ —
l -cVJ’

With the help of (19) this becomes

V2

) (sx

2 - Vj
2

)

Hence if <j> and <f>, are the angles included between the common direction

of the ray and the two wave normals,

cos <o = sin sin fa (26).

In order that the two directions of vibration should be at right angles

to each other, it is therefore necessary that the ray should coincide with

one of the wave normals.

94. Shape of the wave-surface. We may now form an idea

of the general shape of the wave-surface. If in (17) we put successively

z - o, y - 0, x = 0, we obtain the intersections of the wave-surface with

the coordinate planes.
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The intersection with the plane of xy is

(a? + f) (aV + by) - a3

(b
3 + c

3)x> - b
3
(c

3 + a3

) y
3 +aW = 0,

or (x
3 +y 3 - c

3

) (a
3x3 + b

3

y
3 - a3

b
3

) = 0.

This is separately satisfied by

x3
+ tf-c

3 = 0,

and by a
3x2 + b

3

y
3 - a3

b
2 = 0.

The curve of intersection breaks up therefore into a circle of

radius c and ellipses of semiaxes a and b. The circle lies inside the

ellipse and does not intersect it, because we have assumed c to be

smaller than both a and b.

The intersection with the plane of yz is similarly found to be a

circle of radius a and an ellipse of semiaxes b and c. Here the circle

lies completely outside the ellipse.

The intersection of the wave-surface with the plane xz splits up

into a circle

x* + z
3 = b\

and an ellipse cV + a3
of - a

3
c
3 = 0.

The circle and ellipse in this plane intersect (Fig. 1X9), the four

points of intersection being given by

x
/a9

=±W -v*

fb3-A
;=±a v

.(27).

Fig. 119 represents in perspective the

intersections of the wave-surface with the

three coordinate planes, one quadrant only

being drawn. The letters attached to the

curves of intersection represent the lengths of the semiaxes, thus c, c

means a circle of radius o. The com-
plete wave-surface consists of two

sheets
;
an inner sheet, and an outer

sheet which meets the inner sheet in

four points, one lying in each of the

four quadrants of the plane xz. The
coordinates of these four points are

those given above (27).

The directions of vibration are

indicated in the figure by arrows.

Each ray which lies in a principal

- z

O/.Or

Fig. 120.

plane coincides with the normal to the wave-surface at one of the
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points of intersection with it. It therefore coincides with one of the

normals of the wave-fronts which may belong to it. Hence according

to (26) a ray which lies in one of the principal planes, has its two

directions of vibration at right angles to each other. On the elliptical

intersections of the wave-front and the principal planes, the direction

of vibration, being as proved above the projection of the ray on the

tangent plane, must lie in the principal plane. It follows that in the

circular intersections of the wave-surface and the principal planes, the

direction of vibration is at right angles to the plane.

95. The axes of single ray velocity and of single wave
velocity. In general, any straight line drawn in one direction from

the origin, intersects the wave-surface in two points, one on each of

the two sheets. The intercepts between the origin and the points of

intersection measure the optical lengths. There are therefore in each

direction in general, two different optical lengths according to the

direction of vibration. But the four directions OR (Fig. 119) form an

exception, for there is only one point of intersection for each of them,

and therefore only one optical length. If a wave is propagated through

the crystal, and the ray happens to lie along the direction OR, the

difference in optical length between two points along the ray is

independent of the direction of the displacements. Adopting the

definition of “ray velocity” given in Art. ;>i we may call these

directions the axes of “ single ray velocity.” They are not coincident

with the optic axes. The latter indicate the directions of single wave
velocity, the wave being considered to be plane, and normal to one of

the optic axes. Remembering that we may obtain the position of a

plane wave-front WF, Fig. 119, after unit time, if we construct the

wave-surface and draw the tangent planes to that surface parallel to

WF, we see from the figure that in general (as we know already),

there are two tangent planes WlFl ,
and W2F2 ,

which are parallel to

each other, and to WF. The lengths of the perpendiculars from 0 on
these planes, measure the wave velocities. If there is a direction

in which there is only one wave velocity, the two tangent planes

normal to that direction must coincide. There is indeed one tangent

plane MK (Fig. 120) in each quadrant, which touches both sheets of

the wave-surface simultaneously. Symmetry shows that these tangent

planes are parallel to 0 Y, and as they must touch the circle of radius b

in the plane of the figure at a point M, OM must be the direction

of one of the optic axes. Combining (27) and (5) we find for the

cosine of the angle between the optic axes and the axes of single ray

velocities,

V2 + ca

b(a + c)'
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If b is equal to either a or c, or if a and c differ but little from

each other, the angle is small, and may sometimes be neglected. To
form an idea of the error committed in this way, write c = b (1 — 8)

and a = b (1 + e), where 8 and e are small. We obtain for the cosine

of the angle included between the two sets of axes to the second

approximation

(28).

For mica the angle is about 40'. Even in the case of asparagin,

a crystal in which the optic axes are nearly 90° apart, the angle

between the optic axis and the axis of single ray velocity is less

than 2°.

96. Peculiarity of single wave propagation. In general,

one ray belongs to each plane wave which is propagated through a

crystalline medium, and the radii drawn from 0 (Fig. 115) to the

points of contact of the parallel planes TFj and W2F2 with the

wave-surface are the rays belonging to the two waves propagated

parallel to WF. When the wave normal coincides with the optic

axis, there is only one velocity as we have seen, and inspection of

Figure 120 shows that the two rays OM and OK belong to this

same wave. But the wave-front WF touches the wave-surface not

only at the two points M and K, but along the complete circum-

ference of a circle drawn with MK as diameter. To prove this, we
must turn back to equations (14) which determine the points of

contact x, y, z, of a plane defined by the direction cosines of its

normal (l, m, n) and the wave-surface. To suit our present problem,

we must put m = 0, v = b. The second equation becomes indeter-

minate and may be satisfied for any value of y, by a proper choice

of the two indefinitely small quantities m and v-b. The first

and third equations are therefore the only ones we need consider.

Multiplying
-
tihe first by l, and the third by n, we obtain

= v

= 0.

The last step follows on substituting for l, n the direction cosines

of the optic axis as given in (5). Hence

lx (r
2 - c

2
) + nz (r

2 — a2

)
= 0 (29).

Also xl + zn = b (30),

because the required line of contact must lie in the plane passing through

M and touching the circular section. The equations (29) and (30) com-

bined give b (x1 + y* + z2

)
= l<?x + na?z (31),
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which is the equation of a sphere passing through the origin of

coordinates.

The point of contact of the tangent plane and the wave-surface

is therefore the same as the intersection of the tangent plane and

the sphere (31). It follows that the line of contact is a circle. The
rays which join 0 to a point on the circle form a cone, the equation to

which may be obtained by multiplying (30) and (31) together, i.e.

b2 (x2 + y
2 + z2

) = {lc
2x + iia2

z) {lx + nz).

It is a remarkable fact that we may have a plane wave propagation,

such that the condition of minimum optical length from a point P is

satisfied not only for one direction, but for an indefinite number of

directions lying on a cone, CC (Fig. 121). For any point T which

lies either inside or outside the circle

forming the base of the cone, the optical

length is greater. It should, however, be

noticed that if the wave is plane polarized,

there is only one ray. The distinction

Fig. 121. between this case and the general one is

therefore that while in general the vibra-

tion of an unpolarized wave-front may be decomposed into two, for

either of which there is a definite wave velocity and a corresponding

ray, the vibrations do not in this special case divide themselves into

two components, but to each direction of vibration belongs a different

ray, all these rays lying on a cone of the second degree.

97. Peculiarity of a single ray propagation. We may
obtain results analogous to the preceding ones, if we try to find

the directions of the normals to the tangent planes at the conical

point where the direction of single ray velocity cuts the wave-surface.

We make use for this purpose of equations (20). With the same

notation as before x = vl, z = m, are the coordinates of the foot of

the perpendicular from the origin to any one of the tangent planes.

The ray velocity being constant and equal to b while /*. = 0, the second

equation is indeterminate and the first and third become
&A

__
x

b
2 — a2 r2 - a2 ’

bv _ z

W^c2 ~?^c2 '

With the help of (27) and considering that x and y in that equation

are proportional to A, ja, we find

a2Xx c
2vz

-r s + -S ; = 0,

and
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The first equation, with the help of the second, becomes

r~ — b (\x + vz).

Hence the locus of the foot of the perpendicular from 0 to the tangent

planes at R is the circle formed by the intersection of a sphere with a

plane. The equation of the plane shows that it is parallel to 0Y and

touches at R the ellipse ARC, Fig. 119.

98. Wave-surface in uniaxal crystals. The wave-surface in

uniaxal crystals takes the shape already indicated by Huygens. If

b = c equation (17) reduces to

(r
2 - c

2

) (a
2#2 + Cif + c

2
z* - arC) = 0.

The surface splits up therefore into the sphere of radius c and the

spheroid

c
2

a?

Similarly, if a~b, the equation of the wave-

surface splits up into a sphere of radius a and

into the ellipsoid

x2 + y
1

z*
,

c a

Figs. 122 and 123 represent the two

cases, the optic axes being in the first case

the axis of X and in the second case the axis of Z. The positions of

the axes are determined if we take a, b, c to be

always in descending order, but if we drop that

supposition, we may take the optic axis of

uniaxal crystals to be at our choice either in

the direction of X or in the direction of Z.

The spheroid is formed by the revolution of the

ellipse and circle round the optic axis. The
two types of wave surfaces, one having an

oblate and the other a prolate spheroid,

according as the generating ellipse is made
to rotate about its shorter or longer diameter, are illustrated by the

case of Iceland Spar and Quartz. The term positive and negative

crystals, as applied to crystals similar to Quartz and Iceland spar

respectively, is confusing and should be avoided. We may speak

instead of crystals which are optically prolate, or optically oblate, and

in a discussion relating to optical properties only, where no confusion

is possible, we may call them shortly prolate and oblate crystals.

99. Refraction at the Surface of Uniaxal Crystals. The
refracted waves may, in crystalline media, be constructed exactly as in
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isotropic bodies, but as the wave-surface consists of two sheets, there

are in general two refracted rays. In uniaxal crystals, one sheet of the

wave-surface is always a sphere, and hence one of the rays follows the

ordinary laws of refraction. This ray is called the ordinary ray, and

the ratio of the sines of the two angles of direction is called the

ordinary refractive index.

The geometrical construction of the refracted wave-surface and ray

v may be conducted in a manner similar to
" \ that explained in Art. 18, regard being had

to the fact that the wave surface now con-

\q/ sists of two separate sheets. The plane of

\TT Ŝ~ the paper representing the plane of inci-

V dence, and SO (Fig. 124) the incident wave-

^ normal, draw HB parallel to SO. The
perpendicular OH on HB will then lie in

g'
‘ the iucident wave-front. Construct further

with 0 as centre, the wave-surface, the scale being such that the ratio

ofHB to the radius OK of the sphere is equal to the ordinary refractive

index
;
this surface will intersect the plane of the paper in a circle, while

the curve of intersection of the spheroid is an ellipse. The two refracted

wave-fronts are the planes at right angles to the plane of incidence,

passing through B and tangent respectively to the sphere and the

ellipsoid. The rays are the lines joining 0 to the points of contact. In

the figure BT represents the trace of the refracted extraordinary wave-

front, the point of contact with the ellipsoid lying, in this case, outside

the plane of incidence.

It is not necessary to obtain the general equation, giving the

direction of the refracted ray, and we may treat a few special cases

separately.

(a) The optic axis of the crystal at right angles to the plane of

incidence. The trace of the wave-sur-

~i—r r- t

—

i face t>n the plane of incidence is in this

\ V is' case a c*rc^e
>
and the refracted ray may

\ by symmetry be seen to lie in the plane

of incidence. Hence the rays follow

Fig 125 the ordinary law of refraction. In ob-

late crystals the outer circle of radius a
belongs to the extraordinary ray, and its angle of refraction is greater.

The reverse holds for prolate crystals. For oblate crystals, the ratio

of the sines for the extraordinary ray is with the unit time chosen 1/a.

Calling this ge we may write for the equation to the wave-surface

/V + /x,.
2
<y + 22

)
= i,

where is the refractive index of the ordinary ray. The extraordinary

Ficr. 125.
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lefractive index pe has obtained its name and significance from the

optic behaviour of the extraordinary ray in the general case we are

now considering. In the case of prolate crystals, the equation of the

wave-surface in terms of the principal refractive indices becomes

P*(P + + (*<?**= 1>

the axis of z being now the optic axis.

(b) The optic axis is in the surface and plane of incidence. The re-

fracted rays are both in the plane of incidence.—. P.
f .

-ML. From the projective properties of the ellipse,

\v = G-
LMX a’

and if the angles of refraction of the wave
lng. 126. normals are <f> and <&,

tan <f> tan OBM _ LM _ pe

tan 4>i tan OBMx LM1 p0
’

an equation which holds for both prolate and oblate crystals.

If the angles of refraction of the rays, OML and 011/, L, be denoted

by r and rx ,
we obtain similarly

tan r _ p0

tan rx

(c) The optic axis is perpendicular to the refracting surface If

PXAQX be the trace of the ellipsoid

' T i Jy rr i
' — on the plane of incidence, and if we

construct a circle with PXQX = 2a as

diameter, we have, writing
<f>x

f°r the

angle LB SI, which is the angle of
6 '

\ refraction of the extraordinary wave,

tan <f>! _ LM _ c

tanLBMi LMX a ’

D..1. -• 1 Dlf _ OMl

Fig. 127.

sin LBMX = OB ’

and if, for OMx ,
we put its value a, and for OB, 1/sin i.

tan <hi

c sm t

a sin *

or introducing p0 = 1/c ; pe = 1/a,

pe sin i
tan <f>i — T~ „ • 2 * •

Po v pe
— sm2

1

A.nd similarly if rx is the angle of refraction of the extraordinary ray.

tan <f>i —

ton rx =
Po sm *

Po pi — sin
2
i
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(d) The incident wave-front is 'parallel to the surface. Let the plane

of the paper (Fig. 128) contain the optic axis,

a yFT y~\ The refracted extraordinary ray lies along OM,
V% /

whereM is the point of contact of the spheroidal

portion of the wave-surface with a plane drawn

\ parallel to the surface. The ordinary ray

128
coincides, of course, with the normal ON. To
determine the angle between the two rays, which

is also the angle of refraction of the extraordinary ray, we must obtain

an expression for the angle between the radius vector OM of an ellipse,

and the normal to its tangent at M. If 6 be the angle between the

optic axis and the surface which is equal to the angle between ON
and OH, the major axis of the ellipse, and y be the angle between

OM and OH, we have by the properties of the ellipse,

tan 0 = -

5

tan y.

Hence if r is the angle of refraction of the extraordinary ray,

^ . , n . tan 0 — tan y
tan r = tan (0 - y) = -

—

:
— —

—

N " l + tan0tany

_ (a? — c
2

) tan 0

a2 + c
2 tan2 0

_ Pa - Pe

Po cot 0 + Pe tan 0

'

100. Direction of vibration in uniaxal crystals. The rule

that the direction of vibration is in the direction of the projection of

the ray on the wave-front shows at once that on the spheroidal portion

of the wave-front, the direction of vibration must be in a plane

containing the optic axis. As the condition (Art. 93) under which the

two vibrations along the same ray are at right angles to each other

always holds in uniaxal crystals, we may say that the ordinary ray is

always polarized in a principal plane, and the extraordinary ray at

right angles to that plane.

101. Refraction through a crystal of Iceland Spar. A
crystal of Iceland Spar is a rhomb (Fig. 129). The parallelograms

forming its six faces have sides which include

angles of 102 ° and 78° respectively. The faces

are inclined to each other at angles of 105° and

75 °. There are two opposite corners A and B at

which the three edges all form obtuse angles at 102
°

with each other. The optic axis is parallel to the line drawn through

one of these corners A, and equally inclined to the three faces.

B

Fig. 129.

13—2
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Double refraction may easily be exhibited by placing such a rhomb on

a white sheet of paper on which a

sharp mark is drawn. When this

mark is looked at from above
c through the crystal, it appears

double, and if the crystal be

turned round, one image seems

to revolve round the other. Let

0, Fig. 130, be the mark, the

images of which are observed. To trace the image formed by the

extraordinary rays, construct a wave-surface to such a scale that the

spheroid touches the upper surface of the crystal. If T is the point

of contact, a ray OT is refracted outwards along the normal TM,
because at T the tangent plane to the wave-surface and the surface are

coincident. The refraction is therefore the same at that point as for a

wave incident normally.

A ray OS parallel to the optic axis intersects the face at a point E,

and is refracted along some direction EK Disregarding aberrations,

the intersection Q of KE and TM gives the extraordinary image.

As there can be no distinction between an ordinary and an extra-

ordinary ray along the optic axis, the ordinary image P is obtained by

the intersection of the same line EK with the normal ON, on which

the ordinary image must lie. The figure shows that this ordinary

image lies nearer to the surface than the extraordinary one, and if the

crystal be turned round the point 0, the image Q travels in a circle

round P. The vertical plane containing P and Q contains also the

optic axis, and the ordinary image is therefore polarized in the plane

which passes through the two images, the extraordinary image being

polarized at right angles to it.

102. Nicol’s Prism. A Nicol’s prism, or, as it ought to be more

appropriately called, a Nicol’s rhomb, is one of the most useful

appliances we have for the study of polarization. Let Fig 131

represent the section of a long rhomb of Iceland Spar,

passing through the optic axis, and LL' an oblique

section through it. If the rhomb be cut along this

section and then recemented together by means of a

thin layer of Canada balsam, only rays polarized at

right angles to the principal plane are transmitted

through it, if the inclination of the section LL' has

been properly chosen. An unpolarized ray is refracted

at the surface, and separated into two, the extraordi-

Fig. 131. nary ray ]jeing bent less away from the original direction.

The ordinary ray falls therefore more obliquely on the surface of
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separation LV. The velocity of light in Canada balsam being inter-

mediate between that of the two sets of waves in Iceland Spar, the

inclination of LL' may be adjusted so that the ordinary ray is totally

reflected, while the extraordinary ray passes through the combination.

Fig. 132 shows in perspective how the plane of division is cut through

the rhomb. When the end face ABCD of the rhomb

is a parallelogram and parallel to one of the cleavage

planes, the inclination of the section must be such that

the side BB' of the rhomb is about 3 ’7 times as long

as one of the sides of the end faces. It is difficult to

, secure crystals of Iceland Spar which are sufficiently long

to give, under these conditions, a beam of such cross

section as is generally required in optical work. The
angular space through which the Nicol prism is effective

in polarizing light is determined by the fact that if the

incidence on the face LL' is too oblique, the extraordinary ray is

totally reflected as well as the ordinary ray, and if not oblique

enough, the ordinary ray can pass through. The field of view con-

taining the angular space thus limited when the prism is cut according

to the above directions, is about 30°. If it is not necessary to have

so wide a field of view, shorter lengths of crystals can be used by

cutting the end face ABCD, so as to be more nearly perpendicular

to the length. Sometimes that face is even inclined the other way.

A field of view of 25° may thus be secured with a ratio of length

to breadth of 2 to 5. Artificial faces at the end have, however, the

disadvantage of deteriorating more quickly than cleavage planes.

Foucault constructed a rhomb in which a small thickness of air is

introduced in place of the Canada balsam. The prism need then

be barely longer than broad, but the field of view is reduced to 7°.

Fig. 132.

103. Double Image Prisms. It is sometimes convenient to

have two images of a source near together, achromatic as far as possible,

and polarized perpendicularly to each other. An ordinary prism made
of Iceland spar or quartz cannot be used on account of the colour

dispersion, but if a prism of quartz be achro-

matised by means of a prism of another material,

the desired result may be obtained. If glass is

chosen for the material of the second prism, the

achromatism is only complete for one of the

images, but for many purposes it is sufficiently

perfect for the second image also. The purpose

Fig. 133. is better obtained by prisms, like that of Kochon,

in which the same material is used for both prisms,

but turned differently with respect to the optic axis. In Kochon’s
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arrangement the optic axis of the first prism ABC (Fig. 133) is

parallel to the normal BC, this being indicated in the figure by

the direction of the shading. A ray LB incident normally is pro-

pagated without change of direction. The axis of the second

prism ACD is at right angles to the plane of the figure, and

rr n double refraction takes place at K, one ray being

/ propagated in the normal direction as before, but

s the extraordinary ray being refracted along XQ— b&P and, on passing out of the prism, along QM. The

achromatism is complete for the image formed

|jf
by the ordinary ray, and nearly complete for the

B
'

A other. In the prism of Wollaston (Fig. 134), the
Fig. 134.

axis of the first prism is parallel to AB and that of

the second at right angles to the plane of the figure
; the path of the

rays is indicated in the figure.

104. Principal Refractive Indices in biaxal crystals. If

refraction takes place at the surface of a biaxal crystal, and the plane

of incidence is one of the principal planes (e.g . the plane of YZ), both

rays lie in the plane of incidence. A plane wave-front incident at 0
must, after refraction, touch a circle of

-i
j j

r—Y radius a, and an ellipse of semiaxes b and

\ V J j c which form the intersection of the wave-

\ \. J J surface with the plane of YZ. One of

the rays follows the ordinary law of

\ ‘refraction, while the angle of refraction

[

of the other ray may be obtained as in

^ case (e), Art. 99. The refractive index of

the rays belonging to the circular section is 1/a; similarly for planes

of incidence coincident with the planes of XZ and ofXY, we should

have always one ray following the ordinary law, the corresponding

refractive indices being 1jb and 1/c. These three quantities are

therefore called the principal refractive indices, and all quantities

relating to the wave-surface may be expressed in terms of them. Thus
for the direction cosines of the optic axes, we have from (5), if the

refractive indices be denoted by p1} p2 , p3 ,

/ |_ ^? //V-/V , ... „ „ _^Ml /m

3

2
-M2

2

^ ~ V . . 2 _ #J 2 9 Wl-V ,
— ./ — 2 ,

^2 V /X3 fx2 V /V — flj

and for the direction cosines of the rays of single ray velocity, using (27),

^ = ±
1 — Mi

2 5 mi ~° 3 Wl-± S\/'
Ms

2
-M2

2

v Us
2 -

,

; fx.
= 0 ;

v = Ms
2
-M22

M«
2 — Mi

2 *

105. Conical Refraction. Two cases of refraction in biaxal
crystals have a special interest. If a wave-front WF is incident on
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a plate cut out of the crystal at an angle such that the refracted

wave-front HKLM is normal to an optic axis, the ray PD may,

according to the direction of vibration, be refracted along any direction

lying on the surface of the cone investigated in Art. 96, the cone

intersecting the wave-front inside the crystal in a circle (Fig. 136).

If the wave-front WF contains a number of coincident rays, having

their planes of polarization symmetrically distributed in all directions,

the refracted rays form the surface of a cone of the second degree

which becomes a cylinder on emergence at the upper surface. This

interesting result was first deduced theoretically by Sir Wm. Hamilton,

from the shape of the wave-surface, and was afterwards experimentally

verified by Lloyd. To illustrate it experimentally, we may take a plate

(Fig. 137), cut so that its face is equally inclined to both axes. An
opaque plate PQ with a small aperture 0

,
covers the side on which

the light is incident. A second plate P'Q' transmits light through

a small hole at O', which, if properly illuminated, may be considered

to act as a source of light. If now PQ
be moved along the face of the crystal,

a direction O'

0

may be found such that

if the original light is unpolarized, the

ray O'O splits into a conical pencil, which

may be observed after emergence at AB.
This phenomenon is called “ internal

conical refraction" to distinguish it from

another similar effect which takes place when a ray travels along an

axis of single ray velocity.

We may always follow the refraction of a ray belonging to

a certain wave-surface and incident internally on the face of a crystal

by considering it to be part of a parallel beam. The wave-front

belonging to this parallel beam would be the plane which touches
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the incident wave-surface at the point of incidence. If now a ray

HR (Fig. 138) travels inside a crystal along the

axis of single ray velocity, there is an infinite

number of tangent planes to the wave-surface at

the point R, the normals of the tangent planes

forming a cone HKL with a circular section at

right angles to HR.

To each of these normals corresponds a sepa-

rate ray on emergence and each ray has its own
plane of polarization. The complete cone can

only be obtained on emergence if all directions of

vibration are represented in the incident ray.

Fig. 139 shows how the phenomenon of external conical refraction

may be illustrated experimentally. A plate of arragonite has its

surfaces covered by opaque plates, each having an aperture. If one

of these plates be fixed and the other is movable, a position may be

found of the apertures 0 and O' such that only such light can traverse

the plate as passes along the axis of single ray

velocity. The rays on emergence are found to be

spread out and to form the generating lines of

a cone. But as any ray after passing through

a plate must necessarily be parallel to its original

direction, it follows that to obtain the emergent

cone, the incident beam must also be conical.

This niay be secured by means of a lens LL'
arranged as in the figure. Those parts of the

indident beam forming a solid cone which are

not required, do not travel inside the crystal along 00' and hence are

cut off by the plate covering the upper surface.

106. Fresnel’s investigation of double refraction. Fresnel’s

method of treating double refraction which led him to the discovery

of the laws of wave propagation in crystalline media, though not free

from objection, is instructive, and may be modified so as to bring it into

harmony with our present views on the cause of optical dispersion in a

material medium (see Chapter xi).

Consider a particle P attracted to a centre 0 with a force (Yx when
the particle lies along OX, and a force b

2

y when it

lies along OY. The time of oscillation, if the

particle has unit mass, is, by Art. 2, 2tt/ci or 27r/b

according as the oscillation takes place along the

axis of X or along the axis of Y. When the dis-

placement has components both along OX and along

Y

Fig. 140.
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0 Y, the components of the force are arx and b2

y, and the resultant

force is R = Ja*x2 + l/y\

The cosines of the angles which the resultant makes with the co-

ordinate axes are a2xjR and b
2y/R. The direction of the resultant

force is not the same as that of the displacement, the direction cosines

of which are xfr and yjr. The cosine of the angle included between

the radius vector and the force is found in the usual way to be

a2x2 + b
2

y
2

1U' ’

and the component of the force along the radius vector is

{a?x- + b2

y
2
)jr.

If we draw an ellipse a2x2 + b
2
y
2 = k2

,
where k is a constant having

the dimensions of a velocity, the normal to this ellipse at a point

P, having coordinates x and y, forms angles with the axes, the cosines

Fig. 141.

of which are in the ratio a2x to b
2

y, hence the

force in the above problem acts in the direction

ON of the line drawn from 0 at right angles

to the tangent at P. The component of the

force along the radius vector is k2
jr, and the

force per unit distance is P/r2

,
so that if the

particle were constrained to move on the radius

vector OP, its period would be r/L The

ratio r/k depending only on the direction of OP, our result is indepen-

dent of the particular value we attach to k.

If we extend the investigation to three dimensions, the component

of attraction along OZ being (?z, we obtain the same result, and the

component of force acting along any radius vector OP per unit

length is k2
/r

2
,
where r is the radius drawn in the direction of OP to

the ellipsoid

a2x2 + Iry2 + c
2z2 = k2

.

If the displacement is in any diametral plane HPK of this ellipsoid

(Fig. 142), the normalPN does not in general lie in this plane, and the

Fig. 142.

projection of PN on the plane does not pass

through 0, unless OP is a semiaxis of the

ellipse HPK. In the latter case, PL the

tangent to the ellipse in the diametral plane,

is at right angles to PO and to PN, and hence

the plane containing PO and PN is normal to

the plane of the section.

Fresnel considers the condition under which a plane wave
propagation is possible in a crystalline medium. The investigation

in Art. 12 has shown that the accelerations of any point in a plane
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distortional wave of homogeneous type, are the same as those due to

central attracting forces. It is also clear that a plane polarized wave
cannot be transmitted as a single wave unless the force of restitution

is in the direction of the displacement. If we disregard longitudinal

waves as having no reference to the phenomena of light, we need only

consider that component of the force which acts in the plane of the

wave. This consideration leads to Fresnel’s construction. For if we
take the ellipsoid

aV2 + Vy 1 + cV = 1
,

which, as we now see, is quite appropriately called the ellipsoid of

elasticity, a central section parallel to the wave-front gives an ellipse

which, by its principal axes, indicates the two directions of displacement

which are compatible with a transmission of a single plane wave. The

periods of oscillation are proportional to the axes of this section, and

as for a given wave-length the periods of oscillation are inversely

proportional to the velocity of transmission, it follows that the

velocities of the plane waves parallel to the section are inversely

proportional to the axes of the ellipse of intersection. We have thus

arrived at the construction which has formed the starting point of our

discussion of the phenomena of double refraction (Art. 84).

The direction of the elastic force for any displacement being

parallel to the normal to the ellipsoid of elasticity, drawn at the point

at which the direction of tbe displacement intersects the ellipsoid, the

proposition proved in Art. 89 shows that the four vectors representing

the direction of vibration, the elastic force, the ray and the wave-

normal are coplanar. ^



CHAPTER IX.

INTERFERENCE OF POLARIZED LIGHT.

107. Preliminary Discussion. If a plane unpolarized wave

enters a plate of a doubly refracting substance, the two waves inside

the crystal travel with different velocities and in slightly different

directions, but on emergence both waves are refracted so as again to

become parallel to their original directions. If the wave was originally

polarized and the plane of polarization be gradually turned, it is found

that there are two positions at right angles to each other for which

there is only one emergent wave, but in general two overlapping waves

polarized perpendicularly will leave the crystal. Their combination

forms a beam of light which is polarized elliptically, but for analytical

purposes it is often more convenient to treat the two waves temporarily

as having a separate existence. If the emergent system be passed

through a Nicol prism or any polarizing arrangement, which transmits

oscillations in one direction only, one component of the two displace-

ments will be eliminated, and' the ultimate wave is polarized in a

definite direction determined by the position of the Nicol. The two

waves which are now combined have suffered different retardations in

their passage through the crystalline plate, and interference is in con-

sequence possible. The description and explanation of the resulting

colour effects form the subject of this chapter.

In general, a wave of polarized light incident on a doubly refracting

plate becomes polarized elliptically. The axes of the ellipses vary

with the wave-length and the thickness of material travelled through,

hence also with the direction of the incident light, and the ellipse may,

in particular cases, become a straight line or a circle. If the emergent

light is examined through a Nicol prism or any

arrangement which transmits oscillations in one

direction only, colour effects are observed.

It is clear that any interference effect must
depend on the difference of phase in the two over-

lapping emergent waves. Let LO (Fig. 143)

be an incident ray, forming part of a parallel

beam, OA and OB the refracted wave normals,

AS and BT the emergent wave normals. Draw AK at right angles to

BT and BH at right angles to OA. Imagine a second incident ray,

parallel to the first, and at such a distance that the wave normal which
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is parallel to OA passes through B, and is refracted outwards along

BT
;
then from the principle of wave transmission it follows that the

optical length of BK is the same as that of AH. In the emergent

OB OH
wave-front, the difference in optical length is therefore

,’ r
®i v.2

where Vi and v2 are the velocities of the waves along OB and Oil

respectively. (The unit time is still taken to be such that the velocity

of light in vacuo is one.) The angle between OB and OA is small,

and if we neglect its square, we may write OB = OH. The difference in

optical length is therefore p ^ ^ ,
where p is the length of that

wave normal inside the plate, which lies nearest to the plate normal.

Unless the incidence is very oblique, it makes no difference, to the

degree of approximation aimed at, along which wave normal p is

measured, but for the sake of definiteness, we adhere to the specified

meaning of p. If OB and OA represent the refracted rays, we argue

similarly that by Fermat’s principle, optical lengths may be measured

along a path near the real one, committing only an error of the second

order. The optical length for the ray of velocity s2 might therefore

be measured either along its real path OA or along its neighbour

OB + BK, ending, of course, in the same wave-front. We may there-

fore also express the difference in optical length as t (— — -V where t
y>i $2/

is the length of ray inside the crystal and s1} s2 ,
are the ray velocities.

We may, according to convenience, use either oue or the other two

forms, which are both approximate only. Which of these is the more

accurate in a particular case depends on the question as to whether

the angle between the two ray velocities or between the two wave

normals is the smaller. In the neighbourhood of the optic axes, it is

preferable to refer the relative retardation to the wave normals.

108. Intensity of illumination in transmitted light. Con-

sider polarized light with its direction of vibration along OP (Fig. 144),

falling normally on the surface of a crystal which divides the wave into

two portions, one vibrating along OX and one along

0 Y. After traversing the thickness of the plate, the

two waves emerge normally with a difference of phase

8 depending on the difference in optical length of the

two wave normals inside the crystal. If the amplitude

of the incident light is one, the emergent waves have

amplitudes cos a, sin a, if a is the angle between OP
and OX, there being a difference in phase 8 between them. If now

the emergent beam be examined through a INicol prism called the

“analyser,” transmitting light only which vibrates along OA, the

Fig. 144.



107, 108] INTERFERENCE OF POLARIZED LIGHT 197

component Jcx of the transmitted light due to that portion which in

the crystal had OX for its direction of vibration, is kx — cos /3 cos a

;

similarly k2 = sin /3 sin a is that component of the light which, having

OY for the direction of vibration inside the crystal, is capable of

traversing the analyser.

Two rays of amplitude kx and k2 and phase difference 8, polarized

in the same direction, have a resultant, the intensity of which is

ki
1 + k2 + 2hh cos 8,

for which we may write

(kx + /2)
2 — 4&i&2 sin

2
1

.

Z

Substituting the values of kx and k2 the intensity of the emergent

beam becomes

g
I= cos2

(/3 - a) — sin 2a sin 2/3 sin2 - (1).
Z

All colour or interference effects shown by crystalline plates when
examined by polarized light, depend on the application of this formula.

So long as there is only one parallel beam, the plate having the same

thickness everywhere, all the quantities are constant, and the plate

appears uniformly illuminated. Important particular cases are those

in which the Nicols are either parallel (a = /3), or crossed at right angles

(y-“=±I)-

In the first case we have

J0 = ^1 — sin2 2a sin2 ,

g
and in the second Ix = sin

2 2a sin
2 -

,

z

which shows that /„ + 1\ - 1.

This relation is a particular case of the general law that if for

any value of a and /3, I=IA ,
and if /becomes IB on turning either the

analyser or polarizer through a right angle, then IA + IB = 1.

We may convince ourselves that this is true without having

recourse to the equations. The light falling on the analysing Nicol

is partly transmitted and partly deviated to one side, the two portions

making up together the incident light which is supposed to be white.

On rotating the Nicol through a right angle the transmitted and
deviated portions are interchanged so that the complementary effect

must be observed.
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When white light passes through the plate, the relative proportion

of different colours is not in general preserved because 8 depends on

the wave-length. If a is the amplitude of light of a particular wave-

length, so that white light may be represented by 2a2

, the light trans-

mitted through the system is

cos
2 (a - /?) 2a

2 — sin 2a sin 2(3 2 (a? sin
2

.

The first term represents white light of intensity proportional

to cos2 (a — (3), and the second term represents coloured light. The

relative proportion of the different wave-lengths is not affected by

a change in a or (3, but the total colour effect may change because

the product sin 2a sin 2/3 may be either positive or negative. In

the first case, we get a certain colour, in the second, white light

minus that colour, i.e. the complementary colour. We distinguish

two special cases.

Case 1. The Nicols are crossed so that a- (3 = Here we

have

/= sin
2 2a 2 (a? sin

2

^ .

The colours are most saturated in this case, because there is no

admixture of white light. As the axes of x and y are fixed in the

crystal, we may vary a without change of a - /3 by turning the crystal-

line plate in its own plane. There will then be four places of maximum
intensity at which a = 45° or an odd multiple thereof, and four places

of zero intensity at which a is *a multiple of 90°.

Case 2. The Nicols are parallel so that a = (3. Here we have

I= 2a2 — sin
2 2a 2 (a? sin

2

^ .

The colour here is always complementary to that in the previous

case for the same value of a, the light being white when a is a multiple

of a right angle, and most saturated when a is an odd multiple

of 45°. r
If for any value of a and (3, the crystal is turned in its own plane,

there are eight positions at which sin 2a sin 2(3 vanishes
;
these occur

whenever one of the axes OX and OY coincides with the principal

planes of either the polarizing or analysing Nicol. In these positions

of the crystal, the light is white, and on passing through these positions,

the colour changes into its complementary.

109. Observations of colour effects with parallel light.

The general experimental arrangement by means of which the colour

effects of polarized parallel light may be shown, is sketched dia-
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grammatically in Fig. 145 MM' is a mirror reflecting the light

from the sky, Nx and N2 the polarizing and analysing

J&h Nicols, CC' is the crystalline plate.

The field of view of a Nicol prism is much restricted

by the increased distance of the eye from the polarizer iVj.

Hence when light from a distant source, such as the

sky, passes through both Nicols, only such waves reach

the eye as subtend a small angle. The eye atE,
focussed

for infinity, receives light therefore which has passed

through the crystal nearly in the normal direction, and

the crystal appears coloured with a uniform tint. If the

eye is focussed on the crystal, the colours are not so

pure because the different rays leaving the same point

of the crystal have traversed it at different inclinations,

hut when the crystal is thin, so that the relative retarda-

tion is only a few wave-lengths, a small variation in

direction docs not produce much effect on the colour,

and therefore the colours are seen with the eye focussed

on the plate, nearly as well as with the eye adjusted for parallel light.

An interesting variation of the experiment may
be made if the analysing Nicol is replaced by a

double image prism
;

two partially overlapping

images of the plate are then seen. The images

are coloured where they are separate, but white

where they overlap, showing that the colours are

complementary.

110. Observations with light incident

at different angles. If the field of view is en-

larged so as to include rays which have traversed

the crystal at sensibly different angles, the effects

are more complicated because they depend on the

part of the crystal looked at, so that the plate

appears to be covered with a pattern of coloured

bands. To realize experimentally the necessary

increase of the field of view, we may look at the

crystal plate through an inverted telescopic system

consisting of two lenses Lx and X2 ,
placed so as

to diminish angular distances. The different parallel

pencils which have passed through the crystal, pass

out of this system with their axes more nearly

parallel, so that they may now be sent through a

Nicol. A similar telescopic system K^KX serves

to increase the angular deviation of the rays whichFig. 146.
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have passed through the polarizing Nicol. The thickness of the plate

used ought now to be rather larger because it is desired to bring out

the differences which are due to variations of length of paths and

inclination. When crystals are examined in this fashion, it is generally

said that convergent or divergent light is used, but it must be clearly

understood that the rays of light which are brought together on the

retina traversed the crystal as a parallel pencil. So long as the eye is

focussed for infinity, the sole distinction between this case and the

previous one, lies in the increase of the field of view.

111. Uniaxal Plate cut perpendicularly to the axis. In

order to show how the equation (l) is to be applied to the explanation

of the interference pattern under the experimental conditions of the

last article, we may treat first the simple case of a plate cut normally

to the axis of a uniaxal crystal. An eye E looking

in an oblique direction through such a plate (Fig. 147

)

receives rays which have passed through lengths of

path in the crystal, which only depend on the angle

between the line of vision and the normal to the

plate. Hence the retardation 8 is the same along a

circle drawn on the surface of the crystal, having its

centre coincident with the foot of the perpendicular

from the eye to the plate. As the colour effects

depend on 8, the field of view is traversed by coloured circular rings.

A line along which 8 is constant is called an isochromatic line,

but the term isochromatic here includes the complementary colour.

The illumination is not constant along an isochromatic line on account

of the variations of a and /?. In Fig. 148 ABCD
represents the plate, N the foot of the perpendicular

from the eye to the plate. If the line of vision passes

through the point 0, NO is the trace of the plane of

incidence, and this plane also contains the optic axis.

The two directions of vibration of the ray inside the

crystal are therefore NO and the line at right angles to

it, and to make equation (1) apply, we must put the axes of X and Y
along those directions. The circle drawn through 0 with N as centre

is an isochromatic line. The polarizing and analysing directions

remain fixed in space, while the coordinate axes revolve with the point

0 round N. Whenever either sin 2a = 0 or sin 2/3 = 0, the colour term

disappears and we obtain therefore in general four diameters along

which there is no coloration. The lines drawn along these directions

are called achromatic lines.

We consider three cases.

77
*

Case 1. The Nicols are crossed, i.e. a — /3 = -

.
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The intensity as before is given by

/= sin2 2a 2 fa2
sin'

There are two lines at right angles to each other, alongyWm^k t^e]

intensity is zero, these lines coinciding with the direction^^ thh
'

planes of polarization of the analysing and polarizing Nicols. Tne
intensity is greatest at an angle of 45° from these lines. The field is

traversed by rings of varying colours, or in the case of homogeneous

light, by coloured rings of varying intensity, the dark rings correspond-

ing to the positions at which the phase retardation 8 is a multiple of

four right angles. The whole appearance consists therefore of a

number of concentric rings with a dark cross, as shown in the photo-

graph reproduced in Plate II., Fig. 1. The cross widens out away from

the centre and each of its branches is sometimes referred to as a

“brush.”

Case 2. The Nicols are parallel, i.e. a-/3.

The intensity is

2a2 - sin
2 2a2 sin

2

^

,

and the whole effect is complementary to that observed in the first case.

The rings are now crossed by bright brushes. Plate II., Fig. 2 shows

the appearance.

Case 3. This includes all positions of the analyser and polarizer

in which these are neither parallel nor crossed. There are four

achromatic lines corresponding to a = 0 and a = ^ ; /? = 0 and /3 = ^.

Along an isochromatic circle, the colour changes into its comple-

mentary (or for homogeneous light, a minimum of light changes into

a maximum) on crossing one of the achromatic lines. This is shown

in Plate II., Fig. 3 which is also a reproduction of a photograph.

When either the axis of x or the axis of y falls within the acute angle

formed by the directions of the analyser and polarizer, the product

sin 2a sin 2/3 is negative so that the maxima of light are brighter and

the minima less dark. The field is therefore separated into segments

of unequal illumination and may at first sight give the fictitious

appearance of a dark cross. The eight achromatic brushes in this case

separate the bright and dark segments, and are not very conspicuous.

112. Relation between wave velocities. If equation (4 a),

Chapter viii be solved with respect to v1

,
the result is expressed in a

manner which is difficult to interpret. A solution may be deduced

independently in a more convenient form if the direction of the wave

« 14



202 THE THEORY OF OPTICS [CHAP. IX

normal is defined by the angles included between it and the two optic

axes. It can be proved that the length of an axis of a central section

of a quadric completely determines the sum or difference of the angles

which its plane makes with the two circular sections*. Whether it is

the sum or difference depends on whether the selected axis is shorter

or longer than the diameter of the circular section. If we therefore find

the required relation for a principal axis in any one section, the same

relation must hold for a principal axis of the same length in any other

section.

Let the plane of the paper be the section containing the smallest

and largest diameter AA' and CC of the ellipsoid. If OM and OL
(Fig. 148 a) be equal to the length of the intermediate principal axis of

the ellipsoid, the circular sections are contained in the planes drawn at

Fig. 148 a.

right angles to the plane of the paper and through these lines. The
equation of the ellipse is <Pa? + c

2

y
2 = 1. Any radius vector OP of this

ellipse is a principal axis of the section passing through PQ and at

right angles to the plane of the paper, as there is symmetry above and
below that plane.

If v be the reciprocal of the length of OP forming an angle a with

the minor axis,

v
2 = a2 sin

2 a + c
2 cos2 a (2).

As L and M must be equidistant from A it follows that if the angle

POL and POM be
<f> and

<f>
respectively,

® = 4 ± £)»

where the lower sign is to be taken if OP is smaller than OM, so that

P lies between M and L. By substitution we obtain

®2 = #2
sin

2 ± 4>) -f c
2 cos

2

1 (<f> ± </>)

* Salmon, Geometry of Three Dimensions
,
Art. 245.

(3 ).
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The above equation must hold for any central section which has a

principal diameter equal to v~ l
. But each section has two axes having

lengths which we may denote by and 2v2

“ 2
. As the equation (3)

must also include this second diameter, it follows that if the upper sign

holds for one, the lower sign should be taken for the other. After an

obvious trigonometrical transformation (3) is now replaced by

2V!
2 = (

a

2 + c
2

) — (a2 — c
2

) cos (<£' + <£)] ^
2vf - (a2 + c

2

)
— (a2 - c

2
) cos (<£' —

<f>)\

and hence v
}

2 - — (a2 - c
2

) sin
<f>

sin <j>'

and v
,

2 + v2 = (a
2 + c

2

) - (a2 - c
2

)
cos <£' cos 4>

We may identify and v2 with the velocities of plane waves in

doubly refracting media, the wave normal forming angles </> and <f>' with

the optic axes. These quantities are therefore the two positive roots of

equation (4 a), Chapter vm.

In the particular case considered the wave-normal OP is situated

in the plane containing the optic axes. The intersection of the wave-

front with the ellipsoid of elasticity then passes through the axis of y
and one of the wave-velocities must be equal to the reciprocal of the

intermediate semi-axis. This can be verified as follows

:

Write the second of equation (4) in the form

v2 = a2 — (a2 — c
2

) pos
2

\ (4> — </>').

Under the specified conditions the angle between the axis of x and
each of the optic axes is equal to \ (</>-</>') and substituting the cosine

of that angle as given in Art. 89 we find v2 - b

If the difference between a and c is so small that its square may be

neglected, we may write

1 1_ Vi - V2 _ v? - V?

v2 Vi t^o.2 2C ’

where v stands for the velocity to which both ih and v2 approach when

a - c vanishes. For v we may therefore write either Jac or \ {a + c),

and for 2r3 we may write ac {a + c).

Introducing the values of v 2 -^ from (4) we obtain

1 _ (a
2 - c

2

) . a . f.— — , s
- - sm vi sin v2 ,

Vi (
a+c)ac

or
1 1

_ sin &i sin 02 (6 ).

113. Relation between ray velocities. The proposition

contained in the last article represents a theorem which may be

applied to any ellipsoid of semiaxes 1/a, l/b, 1/c
;

if v1} v2 are the

reciprocals of the principal axes of a section which forms angles

Oj and 02 with the circular sections. We may therefore write down at

14—2
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once the corresponding equations for the reciprocal ellipsoid, substitut-

ing the ray velocities and s2 for l/ih and l/»2- We obtain in this

way
25j~ 2 = (a

-2
+ <T 2

) - (a
-2 - c

-2
) cos (% + 7]2),

2sf2= (a
-2 + c~

2

)
- (a~ 2 - c~ 2

) cos (77, - %),

sx
-2 + s2

~ 2 -
(a~

2
+.c~

2

) - (a
-2 - c"2

)
cos ^ cos v)2 ,

$r
2 - s2

~ 2 =
(
a~ 2 - c

-2
) sin ^ sin

where and % are the angles formed between the normal to the

section and the axes of single ray velocities.

114. The surface of equal phase difference, or Isochromatic

Surface. If we imagine a number of plane waves crossing at a point

0 (Fig. 149) in a crystalline medium, there being two wave velocities in

each direction, we may construct a surface such that at any point P,

belonging to this surface, such as P1} P2 ,
the phase difference 8 between

the two wave-fronts which have OP for wave normals is the same. If p

be the radius vector, vx and v2 the wave velocities, the two optical disK

tances from 0 to P are pjv2 and pjv1} hence the required surface has

for equation

:

p<

\

\
(
L --) =

\V-2 vj
constant.

o\

\P2 It will be sufficient to confine the discussion

- to the caSe of a small difference between the

two wave velocities. We shall consider there-

fore a-c and a fortiori a - b to be so small that

their squares may be neglected. We may then

apply equation (6) and by introducing the principal indices of

Fig. 149.

refraction = -
a

.

= -
,
the equation to the surface of equal phase

c

difference is obtained in the form

P 0“s - P-i) sin sin 02 = 8 (7).

Unless highly homogeneous light is used, 8 must not exceed a small

multiple of a wave-length, if interference effects are to be observed.

It follows that unless the observations are carried out close to one of

the optic axes, in which case either sin 0
l or sin 92 is small, /x3— px must

be small. This justifies the simplification we have introduced in

treating a-c as a small quantity.

In uniaxal crystals, there is only one axis, so that putting

01 = 92 = 6, the polar equation to the surface of equal phase difference

or “isochromatic” surface then becomes

p(^e-Mo) sin
2 9 = 8 (8).

This surface is formed by the revolution about the optic axis of

a family of curves for which the polar equation is represented by
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(8) and which is drawn to scale in Fig. 150. Only half of the curves

is shown, there being symmetrical halves below the line PQ. The
scale is such that if the substance is Iceland Spar, and the length

x

marked AB represents one millimetre, the inner curve is the isochro-

matic surface of phase difference equal to 100 wave-lengths, the

wave-length being that of sodium light
; the phase difference belonging

to the outer curve is five times as great. OG is the optic axis. The

upper portions of the curves are sensibly parabolic, because when 6 is

small, the radius vector p is nearly equal to its projection x on the

optic axis, so that the equation to the curve becomes

z^jx = constant.

In biaxal crystals the isochromatic surface has four sheets surround-

ing the optic axes. Their intersection with the plane containing these

axes is represented in Fig. 151 for the case where the angle between the

optic axes is 60°. When p is infinitely large, it follows from (7) that

either Bx or 02 is zero. If 0. vanishes, 02 must be equal to cr, the angle

included between the optic axes. For large values of p we may still

take approximately 02 = <r and the equation to the isochromatic surface

approaches therefore a surface the equation to which is by (7)

p sin 6X = S cosec o-/(/i
3 — p^).

This is the equation to a circular cylinder, having one of the optic axes

as axis. The intersection of this cylinder with the plane of the paper
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e2 =. resffjectively.

gives two straight parallel lines, which are the asymptotes to the curve

which forms the intersection of the isochromatic surface with the plane

containing the optic axes. .If p be the distance of the asymptotes

from the origin
p' — 8 COSeC cr/(/x3 — pj),

there are two similar asymptotes parallel to the second optic axis.

These asymptotes are shown by dotted lines in the figure, and it will

be noticed that each of them intersects one branch of the curve to

which it is a tangent at infinity.

The two distances p0 and px of the vertices of the surface may be

found by substituting 61
=02 = |<r and 01

= -

We then find

p0 = S cosec2
|-o-/(p.3 - p-j),

Pi = 8 Sec
2 ^cr/(p3 -pj).

115. Application of the Isochromatic Surface to the study
of polarization. Let a doubly refracting plate, Fig. 152, receive light

at different inclinations. An eye placed at E
and looking towards a point S on the plate

observes certain interference effects. Tracing

the disturbance backwards from E, there will

be two wave normals within the plate corre-

sponding to SE. Let OS= p be that wave
normal which forms the smaller angle with

o,\ i OM the normal to the plate. According to

Fig. i52 .
Art 104 the difference in path at S, and there-

fore at E, of the two waves which have traversed

the crystal is P
—

• -A- similar reasoning applies to the inter-

ference observed in the direction ET, OxT being the direction of the

wave normal inside the crystal. Draw OS1 parallel to OxT and EN at

right angles to the plate. The interference seen at T is the same as

that due to the phase difference at Sx for waves propagated through 0.

If i be the inclination of the line of sight

TV

3/

tan i
NS
NE'

If r is the inclination of OS to OM
MS

tan r =

. NS
' MS

MO’

NE tan i

MO tan r
'
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For small values of i the ratio tan 2/tan r is nearly constant even in

doubly refracting crystals. Representing this ratio by ^

:

and similarly

NS_ NE
MS-* MO'
NT NE
MS, ^ MO'

If an isochromatic surface be constructed with 0 as centre, it follows

that its intersection with the upper surface of the plate enlarged in the

ratio pNE/MO gives the interference pattern as it is seen projected on

the plate by an eye placed at E. When tan«‘/tanr is not constant,

there is a certain distortion due to the variability of that factor, but the

general appearance remains unaltered.

As an example we may use Fig. 150 to construct the isochromatic

lines for a plate of Iceland spar. Place the plate with its normal in the

plane of the paper, its lower surface passing through 0 with 00 along

the optic axis. The upper surface will intersect the plane of the paper

in a line which is at a distance from 0 equal to the thickness of the

plate, the length of AB representing one millimetre. The intersection

of the isochromatic surfaces which are formed by the revolution of the

curves drawn in the figure about 00 and the upper surface of the plate,

will show the isochromatic lines for a phase difference of 100 and 500

wave-lengths. As all isochromatic surfaces may be obtained from one

by increasing the length of the radius vector in a given proportion,

we may obtain all isochromatic curves from the same surface by
changing the scale. Thus to obtain the curve for which the retardation

is ten wave-lengths, in the above example, we must, taking the inner

curve, alter the scale, so that AB represents ‘I mm. In simple cases,

this method of forming a rapid idea of the shape of the interference

curves is very serviceable, the different curves being obtained by
drawing the upper surface of the plate at different distances from the

origin.

116 . Isochromatic curves in uniaxal crystals. To study the

S intersection of the isochromatic surface and a plane drawn
in any direction, construct a spherical triangle SNO
(Fig. 153), such that if C be the centre of the sphere, ON
is parallel to the normal of the plate, OO parallel to the

optic axis, and CS parallel to any wave normal inside

the plate. Also let

0 ---- angle between OS and CO,

„ „ ON and CS,

ij/= „ ,, ON and CO,

A= „ „ planes CNS and ONO.
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In the spherical triangle NO$
cos 0 = cos cos <£ + sin i/' sin <j> cos A ;

sin2 6 = sin
2

ij/ + sin2
<f>

(cos
2

^ — sin
2
^ cos

2 A)
- sin 2$ sin

<f> cos <f> cos A.

To obtain the isochromatic curves we must take the intersection

between the surfaces given by (8):

p sin
2 6 = constant

and the plane at which p cos 4> — e>

where e is the thickness of the plate

Eliminating p we obtain an equation for the curves in the form

sin
2 0

cos
= constant (9).

We shall consider the angle of internal incidence to be so small

that we may write sensibly = 1 + \ sin
2
4>, and rejecting all terms

involving a higher power of 4> than the second

:

sin
2 0

COS cf>

= sin
8

ij/ + sin
2

(| o- 12 cos2
1p — sin

2
1jf cos

2 A) sin 2^ sin <£ cos A.

An important special case occurs when the plate is cut parallel to

the axis. In that case sin t// = 1 and sin 2^=0 so that the condition

for equality of phase difference at the upper surface becomes

sin
2

(i + 1 cos
2
•A
~ sin

2
1}/ cos

2A) = constant,

or introducing the value of ^

sin2 4> (sin
2A — cos2A) = constant.

If we introduce rectangular coordinates with the pole of the plate

normal AT as centre, so that

w-e&m <f> sinA
y - e sin cos A,

the equation to isochromatic curves reduces to

x1 —y1 = constant.

These curves are therefore rectangular hyperbolas, one of the axes

being parallel to the direction of the optic axis and the other at right

angles to it. If sin 2i/r does not vanish, then for small values of <f> the

term involving the first power of <jf> is the important one. Close to the

normal therefore in a plate cut obliquely to the axis, the isochromatic

lines are given by

sin 4> cos A = constant,

which represents straight lines at right angles to the plane containing

the optic axis and normal. When
<f> becomes sufficiently large for the
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second order terms to become appreciable, these lines become curved,

but both terms together still represent conic sections.

Unless the normal to the plate is nearly coincident with the optic

axis, there are no achromatic lines, as the axes of x and y remain

sensibly parallel throughout the field.

117. Isoehromatic Curves in Biaxal Crystals. We shall

not follow out in detail the calculation in this case, but only indicate

the method which may conveniently be adopted. Construct the spheri-

cal triangle NS0lt NS02 ,
Fig. 154, corresponding

to NSO, Fig. 153, only with the difference

that we have now two optic axes C01 and C02 .

Let A represent the angle between the sides

02 JSfS and NG, where NG is a large circle bisecting

the angle between NO L and N02 . If o> be half the

angle between the sides N02 and NOlt we have

Fig. 154. in the triangles N

0

2S and NOfi
cos 02 = cos ^ cos + sin \j/2 sin </> cos (^t - w),

cos 0
t
= cos </% cos <f>

+ sin \]/
l
sin

<f>
cos (

A

+ o>).

The angle 2u> may be obtained from ^1} i//2 ,
and 0L02 ,

the angle

between the optic axes. From the above two equations we may obtain

sin
2

sin
2
6Jcos

2
<f>.

expressed in a series proceeding by ascending powers of sin
<f>.

The isoehromatic curves are found by combining (7) with p cos 4> = e,

and thus determined by putting sin 6U sin 02/cos 4> equal to a constant.

It is found that when the normal of the plate coincides with one

of the axes of elasticity, the factor of the first and third powers of

sin 4> is zero, and, neglecting sin
4

4>, the condition for the isoehromatic

lines is obtained by putting the factor of sin
2
<£ equal to zero. We

thus obtain, as in the last article, the equation of rectangular hyper-

bolas. When the plate is cut obliquely the factor of sin cf> is the

important one, and the curves close to the normal are straight lines,

as with uniaxal crystals*.

118. Biaxal Crystals cut at right angles to the bisector

of the angle between the optic axes. This case has special

interest, and may be treated in a very simple manner, if the angle

between the optic axes is small. Let OM\ ,
OM2 be the directions of

* For the details of working out the general case, see Kirehhoff, Vorlesungen

iiber mathematische Optik
, p. 25G.
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the optic axes. When these nearly coincide with the normal, the angles

OM,P and OM,P are nearly right angles, so that approximately,

o
Fig. 155.

sin 6, =
PM,

OP ;
sin 02 -

PM,
op •

Hence the equation to the isochromatic curve is

PM, x PM,
OP

= constant.

If further, OP form a small angle with the normal, we may consider

it to be constant and equal to the thickness of the plate. The isochro-

matic lines are in that case the lines on the surface of the plate which

satisfy the equation

r,r, = constant,

where rL and r, are measured from the points M, and M, on the crystal,

such that plane waves traced back along the lines of vision

,r„ EMi and EM, (Fig. 156) are refracted with their wave-

normals parallel to the optic axes. The curves are so-

called lemniscates. For small values of the constants they

split up into separate curves, each surrounding one of the

points M, or M,. For large values of the constants, they are

Fig. 156. nearly circular, with the point halfway between M, and M,
as centre. Figs. 4 and 5, Plate II, show the appearance.

z<

119 . The Achromatic Lines in Biaxal Crystals. To trace

the achromatic lines in a biaxal crystal cut so that the surface of the

plate forms equal angles with the optic axes, we must introduce the

condition that sin 2a or sin 2/3 is zero. We begin by finding the locus

. of points on the surface of the plate

\ (Fig. 155) at which the product sin a sin ft

\ has a constant value. The polarizer and
analyser being fixed, a and /3 can only

depend on the directions of the two vibra-

tions emerging at the point P, and these

are for the two rays respectively the ex-

Fig. 157. ternal and internal bisectors ofPM,
,
PM,

The problem therefore consists in finding

the locus of a point P (Fig. 157) such that the bisectorPK has a given

direction which we take to be axis of Y, the origin of coordinates

being the point halfway between the fixed points M, and M, If M,H
and M,K be drawn at right angles to PK, the triangles PHM, and

PKM,
are similar. Hence

PK : PH = M,K : M,H
,

and if cc, y be the coordinates of P, and ±£, ±y those ofMx and M,>

(y + v) : (y ~ V) = % + £ : (f - x).
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A simple transformation gives xy = The locus of P is therefore

a rectangular parabola passing through the fixed points M1} As the

choice of the axis of Y is arbitrary depending on the product sin a sin fi,

we obtain a number of similar curves all passing through Mx and M2 .

With crossed Nicols the intensity of the transmitted light is pro-

portional to sin
2 2a sin2

8/2 (Art. 108). If a is zero there is no light at all,

and the line along which there is this total extinction has just been shown

to be a hyperbola. With small values of a, either positive or negative,

sin 2a is still very small, so that to either side of the line there is little

illumination and a dark space appears, formed by a number of overlapping

hyperbolas which are obtained by rotating the central curve, which is

more particularly called the achromatic line about the pointsMx andM2 .

The brush-like appearance of the dark space is shown in Plate II, Figs. 4

and 5. The asymptotes lie in the principal directions of the polarizer

and analyser, and pass through the points halfway between Mx and M,.

If the plate be rotated, the analyser and polarizer remaining fixed, the

asymptotes remain in their places while the eccentricity of the hyperbola

alters, the achromatic lines however still pass through the points Mx

and J/2 .

If p be the distance of the central point from M
l
and 6 the angle

between p and the axis of x, £y) = p
2 cos 9 sin 9. On changing 9

,
the

product has its maximum value when 9 = 45°. The eccentricity of the

hyperbola has then its smallest value and Mu M2 are at the vertices.

This is approximately the position in Fig. 4. If 9 is zero or equal to a

right angle, so that points Mx> Ji2 lie on one of the coordinate axes,

the central achromatic line coincides with the direction of the analyser

or polarizer and the two brushes join together, and present an appear-

ance similar to that of the cross in uniaxal crystals.

120. Measurement of angle between optic axes. The inter-

section of the isochromatic surface (Fig. 151) with planes drawn at

different distances from 0, shows that for small differences of path

the interference rings surround the optic axes in closed curves. This

affords a means of determining the angle between the optic axes. If a

plate of a crystal cut symmetrically to the axes, as assumed in the last

two articles, be mounted so that it can be rotated about an axis at right

angles to the axes through an angle which can be measured, we may
bring first one centre of the ring system belonging to one optic axis

against a fixed mark in the observing telescope, and then the centre of

the system belonging to the other axis. The angle of rotation is the so-

called “apparent angle” between the optic axes, for it is clear that what
is measured is the angle between the lines of vision MXE and M2E
(Fig. 156). This angle is to be corrected for refraction to get the

angles formed between LXMX and L,M2 .
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121. Dispersion of Optic Axes. The position of the optic

axes in crystal depends on the direction and the relative magnitudes of

the axes of the ellipsoid of elasticity. As a rule the directions of the

axes are fixed by the crystalline properties of the substance and do not

depend on the wave-length. It is otherwise with the relative lengths

of the axes. These are in the inverse ratio of the principal velocities

vu v2 , Vs> and this ratio varies in some cases considerably on going from

one colour to another. If it were necessary to trace accurately the

isochromatic and achromatic lines, this so-called dispersion of the optic

axes would have to be taken into account.

122. Two plates of a uniaxal crystal crossed. A great

variety of effects may be produced by allowing light to traverse

several plates in succession. We shall only consider one case, which

is of some importance.

Let a plate be cut obliquely to the axis of a uniaxal crystal, and

then divided into two halves which are therefore necessarily of the

same thickness. Superpose the two halves and turn one of them

through a right angle. We shall determine the shape of the iso-

chromatic lines in this case.

The first plate produces a difference in optical length between two

coincident wave normals, which as obtained from (9) is

e sin
2
#i

8i = 0*o -/*«)-
cos

<f>

the meaning of the letters being the same as that of Article (116),

The second plate being turned through a right angle, the direction

of vibration in the ordinary and extraordinary rays is interchanged,

so that the phase difference in that plate is

s _ / sin2 02
8» -(/*.-/*») -33^7-.

The values of cos 4> and cos </>' are nearly equal for the double

reason that is small, and that the difference between fie and /* 0 is

small. Hence the total phase difference is proportional to

sin
2 02 — sin3 01 = cos

3 0X — cos
2 02 .

According to Art. 116

cos 01 = cos <j> cos i(f + sin
(f>

sin i
f/
cos A .

To find the angle 02 which the optic axis makes with the plate

normal in the upper plate, we have only to increase the angle A
by a right angle, keeping all other quantities the same. Hence

cos 02 = cos
<f> cos ^ — sin sin

\J/
sin A.

Neglecting higher powers of sin (f>

cos
2
0i — cos

2 02= sin <j> sin 2^ (cos A + sin A).
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Introducing rectangular coordinates, so that

e sin cos A = cc, e sin <f> sin A =y,

the equation to the isochromatic line for which the total difference in

optical length 8L + S2 is equal to n\ becomes

(/*« - l
lo) sin 2$ (w + y) = n\ (10).

This represents a series of parallel lines. The field of view is

therefore crossed by a series of hands, the central one not being

coloured. The hands are the wider apart the smaller *]/, so that if

the bands are to be broad, the plate should be cut nearly normally

to the optic axis. It is found that in this case, the departure from

straightness which depends on terms involving sin'
2

<f>
is also small.

Two plates combined together in the manner described, form the

essential portions of the “ Savart ” polariscope, which is the most

delicate means we possess for detecting polarized light. The double

plate is provided with an analyser, consisting of a Nicol prism or a

Tourmaline plate. In both cases, the plane of transmittance through

the analyser should bisect the angle between the principal planes of

the Savart plates in order to get the most sensitive conditions. If the

incident light he polarized at right angles to the plane of transmittance,

the eye sees a dark central band accompanied on both sides by

parallel coloured fringes. If the incident light he polarized parallel to

the direction which can pass through the analyser, the central band

is bright, and the whole effect is complementary to that observed in

the previous case. By examining the light reflected from the sky or

from almost any surface, the coloured fringes are noticed, and by

rotating the whole apparatus we may find the direction in which the

fringes are most brilliant and hence determine the plane of polarization

of the incident light.

123. The Half Wave-length Plate. If plane polarized light

falls normally on a plate of a crystal cut to such a thickness that

the two waves are retarded relatively to each other by
half a wave-length, or a multiple thereof, the transmitted

beam is plane polarized. Let OX and OY be the two

principal directions of vibration in the crystal, and a the

angle between OX and the direction of vibration of the

incident beam. The displacements resolved along OX
Fig. 158. and OY may then be expressed by

u = a cos a cos wt,

v~a sin a cos «£.

Then if the thickness of the plate be such that its optical length
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for the vibration along OF is half a wave-length greater, or half a

wave-length less, than that for the vibration along OX, the displace-

ments at emergence will be

U = a COS a COS o)t
,

v = — a sin a cos

so that there is again plane polarization, but the angle of vibration

forms an angle — a with the axis of x. The same holds for a

retardation equal to any odd multiple of two right angles. For even

multiples, the plane is that of the original vibration. These plates, in

which a relative retardation of the two waves amounting to half a

wave-length talres place, are called “Half Wave-length Plates” and
are used in some instruments in which it is desired to fix the plane of

polarization accurately. The simple Nicol does not permit of very

exact adjustment, for while it is rotated slowly near the position of

extinction, a broad dark patch is seen to travel across the field, and it

is difficult to fix the exact position for which the centre of that patch

is in the centre of the field of view. In the instruments in wbich a half-

wave plate is used, that plate covers half the field of view. If OWand
OM, Fig. 159, be the principal directions of the half-wave plate covering

the left-hand portion of the field of view, and if the incident light

vibrates along OPlt the field of view will be divided by the plate

into two portions, the directions of vibration at emergence being along

OPi, OP2 ,
equally inclined to ON. An eye examining

the field through an analysing Nicol will find the two

halves unequally illuminated, except where its principal

plane is coincident with ON or at right angles to it. In

the latter position, the luminosity of the field is small

if a is small, and the eye is then very sensitive to small

differences of illumination, so that the position of the

analysing Nicol may be fixed with great accuracy. A half wave-length

plate used in this fashion is the distinguishing feature of “ Laurent’s

Polarimeter.” The weak point of the arrangement lies in the effect of

refrangibility on the retardation, in consequence of which a retard-

ation of half a wave-length can only be obtained for a very limited

part of the spectrum. Hence homogeneous light must be used with

instruments which contain these plates.

Fig. 159.

124. The Quarter Wave Plate. Plates in which the relative

retardation of two waves is a quarter of a period, are called Quarter

Wave Plates. They have the property of converting plane polarized

light vibrating in a suitable direction into circularly polarized light.

Let OX and OF be the two directions of vibration in the crystal,

the vibration along OF being the one propagated most quickly.
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Consider an incident plane polarized ray vibrating at an angle a to

OX. The displacements in the incident vibrations are

u - a cos a cos cat,

v = a sin a cos cat.

At emergence the displacements may, by suitable adjustment of the

origin of time, be expressed as

U = a COS a COS (at

v = a sin a cos (
<at + 8)

In general this represents an elliptic vibration and we may investi-

gate whether a point P moves clockwise or counter-clockwise through

the ellipse. If a is in the first quadrant, then for w£ = 7t/2, the x
component of .;the displacement is zero, and the velocity in the x
direction negative. Under these conditions, the rotation is positive

(anti-clockwise) or negative (clockwise) according as the y displacement

is positive or negative.

But under the above conditions at emergence for <at = ir/2

v = — a sin a sin 8.

The rotation is positive or negative, therefore, according as sin 8 is

negative or positive, hence if the total retardation is less than half a

wave-length, the rotation is negative or clockwise. We should have

got the opposite result if we had taken a to be in the second quadrant.

Our conclusions may be formulated thus :

—

If the retardation is less than half a wave-length, the rotation is

from the direction 0 Y, which belongs to the more quickly travelling

wave, to the direction OP of the incident vibration, taking that

branch of OP which forms an angle less than a right angle with 0 Y.

If the retardation is between half a wave-length and a whole

wave-length, the rotation is from the direction OP to the direction

OY.

The displacements indicated by (11) when resolved along OP and

at right angles to it, become

u' = a [cos
2 a cos (at + sin

2 a COS ((at + 8)],

v' = a [sin a cos a cos (
(at + 8) — sin a cos a cos (at],

and if a = j4

u = \a [cos ((at + 8) + cos (nt)] = a cos |8 cos (cat + -|-S),

v — \a [cos ((at + 8) — cos nt] — — a sin <[8 sin (cat + ^8),

• U'“ V

2

- 3

cos
2
^8

+
sin

2 |S
a *
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Hence the particle describes in general an ellipse having OP as one

of its principal axes. When 8 = - the ellipse becomes a circle. If

therefore a plane wave be propagated through a doubly refracting

substance, and if the incident vibration is equally inclined to OX
and OY, then along the normal to the wave, the rays are plane,

elliptically, or circularly polarized in regular succession. The state

of vibration and the direction of rotation are indicated in Fig. 160

for equal distances from each other, each step in distance corre-

sponding to a retardation of 45°.

Fig. 160.

Thin plates of mica or gypsum may be obtained of the right

thickness to give circular polarization. If the retardation is 3A/4 the

effect is the same, but the rotation is left-handed in the same position

relative to the crystal, where it was right-handed with a retardation

of A/4. We may call the direction OX the axis of the quarter plate,

so that the direction of rotation for retardation of less than half a

wave-length is from the direction of incident vibration to the direction

of the axis, through the acute angle included between them. A
retardation A/4 + wA acts, so far as a particular wave-length is con-

cerned, exactly like one of A/4, but the difference in the refractive

index for different colours has a more serious effect, the higher the

value of n.

125. Application of Quarter Wave Plate. Besides being

able to give, at any rate for one wave-length, light which is circularly

polarized and rotating either in one direction or in the other, a quarter

wave plate is useful for the investigation of elliptically polarized light.

Elliptic polarization may always be represented by the superposition of

two plane vibrations taking place in the direction of the axes of the

ellipse and having a relative retardation of 90°. This phase difference

is in one direction or another according as the elliptic path is right-

handed or left-handed. A quarter wave plate with its axis parallel to

one of the axes of the ellipse will increase or diminish the existing

phase difference by another right angle, and the result is therefore

plane polarization. If a and b are the semiaxes of the original ellipse,

the direction of vibration after passing through the quarter wave plate

will form an angle tan with the direction along which a is
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measured, the ± sign being determined by the question whether the

quarter plate increases or diminishes the original retardation.

126. Babinet’s Compensator. This is an arrangement which

has been successfully used for the study of elliptic polarization. It

consists of two wedges of quartz, with their axes in the direction of the

L shading of the two surfaces in Figure 161. If a

parallel beam of light traverses the system in the

& direction LX, the ray vibrating in the direction

|jjj§5i“JJ“
a“v> of the edge CD of the upper prism will pass^ through that upper prism more quickly, but through

w the lower prism more slowly, than the vibration at

Fig. 161 . right angles to it. The central ray passes through

equal thicknesses of both prisms. If plane polarized light which may
be resolved parallel to AB and AC fall on the prism, the central ray

will be plane polarized in the same direction as the incident light but

on either side the rays will in general show elliptic polarization. At
certain distances however the relative retardation of the two rays is

two right angles and the transmitted ray will again be plane polarized.

If the transmitted light be examined by a Nicol, properly placed,

the field of view is seen to be traversed by parallel bands. If now
the original light is elliptically polarized, the whole system of bands

is the same as before but shifted sideways. In Babinet’s Compensator,

each of the wedges may be shifted parallel to itself, and in this way
the central band may be brought back to its former position. The
amount of displacement necessary to bring it back measures the

relative retardation, and by its means the ratio of the axes of the

ellipse may be determined.

127. Circularly polarized light incident on a crystalline

plate. We now consider the case where circularly polarized light falls

on a crystalline plate and is then analysed by a Nicol prism or other

plane polarizer. The incident light may be considered to be made of

the superposition of two plane polarized waves having a relative

retardation of a quarter of a wave-length. To fix our ideas, let the

rotation of the incident light be anti-clockwise, the displacement along

OX being represented by a cos <at and that along OY hy a sin <»t.

The direction of these axes may be chosen according to convenience

and we may take them to be coincident with the principal directions

of vibration inside the crystal. Let there be a retardation 8 inside the

crystal of that component which vibrates along 0 Y. If the analyser

is placed so that the light it can transmit vibrates along a direction

forming an angle a with OX (the rotation from OX to OY being

positive) the two parts of the beam leaving the analyser have

s 15
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amplitudes a cos a and a sin a and a phase difference of + 8. Hence
the intensity of the emergent light is

1= a? (1 — sin 2a sin 8) (12).

This expression replaces equation (1) which holds when the incident

light is plane polarized. The achromatic lines are determined by

sin 2a = 0, and are therefore two lines at right angles to each other,

parallel and perpendicular respectively to the principal plane of the

analyser. The isochromatic lines are the curves for which 8 is constant.

If the plate is cut from a uniaxal crystal at right angles to the axis,

the isochromatic lines are circles which in adjoining quadrants show

complementary effects depending on the change of sign of sin 2a.

If the plate be examined by convergent or divergent light, the

appearance, for positive values of 8, is that shown in Fig. 162, and for

negative values of 8 in Fig. 163. As the chromatic influence on the

phase difference 8 is the greater, the larger the phase difference, the

first minimum observed with white light looks darker than the subse-

quent ones, the minima for the different colours overlapping more
closely. We may refer to those two minima as the two dark spots,

which lie in the first and third quadrants in Fig. 162 and in the

second and fourth quadrants in Fig. 163.

The difference in the appearance gives us a useful criterion to

distinguish between prolate and oblate crystals. Let it be required

to study the intensity of light along the line NO (Fig. 148), which

we take to be the axis of X. If OF be the axis of Y at 0, and BO
the direction of vibration transmitted by the analyser,

a is in the first quadrant and sin 2a in (12) is a positive

quantity. OF being the direction of vibration of the

ordinary ray, the retardation 8 is positive for oblate

crystals such as Iceland Spar, in which the ordinary

ray is transmitted more slowly. Hence Fig. 158 re-

presents the appearance. If the polarizer is placed at

right angles to the analyser or along AB (Fig. 148), the axis of the

quarter plate must, according to Art. 124, be placed parallel to AO
if the rotation is to be anti-clockwise, as has been assumed. Hence,

Fig. 148.
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for oblate crystals, the line forming the dark spots is parallel to the

axis of the quarter wave plate, while for prolate crystals (Fig. 163)

the two lines are at right angles to each other. In both figures the

line PQ marks the position of the axis of the quarter wave plate. It

is easily seen that no difference is made in the appearance if the

positions of the analyser and polarizer be interchanged. Hence the

same rule holds whether the original rotation is clockwise or anti-

clockwise, and we need only consider the relative positions of the

axis of the quarter wave plate and the line joining the dark spots

to decide between the two possible kinds of uniaxal crystals.



PART II.

CHAPTER X.

THEORIES OF LIGHT.

128. Small strains in a small volume may always be
treated as homogeneous strains. Let a, /?, y represent the dis-

placements within a strained body, and let the displacements be

expressible as functions of the unstrained coordinates x, y, z of any
point, so that

® =/i (v, y, z), P =/2 (a?, y, z), y=/8 (X, y, z).

Let further a, ft', y be the displacements of a particle near x, y, z,

which originally has coordinates x + £, y + rj and z + £, then, neglecting

squares of ?), £, by Taylor’s theorem :

, da . do. da „
“ =a +£ J + %’, +S c

P ~ P dx* dy v
dz

Ct

^ ^ dx * dy ^ dz
^

vj, £ denoting the coordinates of the second particle relative to

those of the first in the unstrained condition. If rf, £' denote

similarly the relative coordinates of the same two particles in the

strained condition, we have

or

£ = (x + £ + a
) — (x + a) = £ + a' — a,

j.! (\ da\ . da da ^ \
i ={1 + Tj (+ WJ '

l + Tz
t:

, dp t ( dp\ dp y

4. dY - + ^ dY\(

Similarly V
( 1 ).
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These equations denote a homogeneous strain, for the linear

relations between the strained and unstrained coordinates necessarily

satisfy all the conditions laid down for such a strain by Thomson
and Tait (

Natural Philosophy
,
Vol. I. Art. 155): “ If when matter

occupying any space is strained in any way, all pairs of points of

its substance which are initially at equal distances from one another

in parallel lines remain equidistant, it may be at an altered distance ;

and in parallel lines, altered it may be, from their initial direction ;

the strain is said to be homogeneous.”

129. Simple Elongation. As a simple example of a homo-

geneous strain we may take the special case in which all coefficients

cl/OL *

except vanish. This gives
'

This is at once seen to represent a strain in which all lines

parallel to OX are increased in the ratio ^1 + : 1, their dis-

tances from each other being unaltered. It is therefore a simple

(Hol cl
elongation along OX, the elongation being measured by If

70 7

is small and if and also have values which though small are

not negligible, the strain consists of three small elongations along the

three coordinate axes, superposed on each other. We denote these

elongations by e, f g, so that

_ d/3
6

dx' J dy ’

dy
9 =

A cube having unit sides parallel to the coordinate axes, takes by the

strain a volume equal to (1 + e) • (1 +/) • (1 + g), and neglecting small

quantities of the second order, it is seen that the cubical dilatation

which is the increase of volume of unit volume is measured by

,, da d!3 dy
e+/+fl,=S +

d^
+
di .(2).

In a homogeneous strain all portions of a body have their volume

increased or diminished in the same ratio, and we may therefore speak

of the dilatation as a quantity belonging to the strain and independent

of the position or shape of the portion of the body which we contemplate.

This may formally be proved as follows

:

Take three points having coordinates &, 17,, 4; 4; 4, %, 4
respectively.

The volume r of the tetrahedron having these points as three of its
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vertices and the origin as the fourth, is equal to the sixth part of the

determinant

4 Vi 4

4 V‘2 4

£3 Vs fs

This determinant is changed by the strain to

4' Vx 4'

4' V2
4'

4' Vs is

Substituting from equations (1) and applying a well-known theorem

of determinants, it is found that the volume t of the strained tetra-

hedron is the sixth part of the product

4 4
da da da

Vi +
dx dy dz

4 V2 4 X
d/3

dx dy

d/3

dz

4 Vs £3

dy

dx
dy

dy
i + *

dz

The second determinant simplifies, when the differential coefficients are

so small that squares may be neglected, and becomes

Hence r
' =T

(

da d/3 dy
+
dx

+
dy

+
dz'

„ da d/3 dy
1 + -T- + + 1

dx dy
«y\
dz)*

and
r da d/3 dy

dx dy dz

measures the cubical dilatation.

130. Simple Shear. Consider a strain which is represented by
the equations

j-t > da
i=( +

T^’

4 = 4
A point P on OX (Fig. 164), the axis along which both x and £ are

measured, keeps its x coordinate unchanged but is shifted parallel to

OY through a distance idp/dx, so that the line OX is turned through

an angle d(3/dx. Similarly a point Q on OY is shifted parallel to OX
and the line 0Y is turned through an angle da/dy. The parallelogram

OP’BQ' has an area which, neglecting small quantities of the second
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order, is equal to OP x OQ, so that the strain involves no sensible change

of area, and as all z coordinates are unaltered, the strain involves no

sensible change of volume. If the strained figure be

rotated until OX

'

coincides with OX, it is seen that

the total change may be represented as a sliding of all

lines parallel to OX along themselves, the amount of

the relative sliding being proportional to the distance

between any two lines. The distance QQ' being

OQda/dy, is increased by the rotation through an

angle dp/dec (bringing OP' into coincidence with OP), by an amount

OQdfijdx, so that the sliding per unit distance is

da dB
c — -j—h -j— •

dy dec

If the total strain is confined to such a sliding, it satisfies the

condition of a simple shear (Thomson and Tait, § 171), c being the

amount of the shear.

\r

Fig. 164.

A simple shear may be produced by an elongation e in one direction,

together with an equal contraction in a direction

at right angles. Let OX and OY (Fig. 165) be

the two directions. A length OA is changed

by the strain to OA', where OA' = (1 + e) OA.

Take a point 5 on OF at a distance OB = OA'.

If all lines along OY are reduced in the ratio

(1 + e) : 1, OB will be changed to OB', so that

OB' = OA. If OD — OA, and OC= OB, the paral-

lelogram ABOD will be changed into A'BCD'.
Imagine A'B'O'D' to be transposed so that A'B' is made to coincide

with AB, and it will be seen that the whole change is equivalent to a

sliding of the lines parallel to AB along their own lengths. If 0 be

the angle between AD and a line drawn at right angles to AB, the

amount of sliding per unit distance is 2 tan 6.

If further, a is the angle between OB and AB, 0 + 2a = J-7T, so that

the amount of sliding is 2 cot 2a = cot a — tan a.

Now tan a:
OA
OB

OA = 1

OA' l+e

-l-e (approximately, if e is a small quantity).

Hence the amount of sliding is 2e, neglecting small quantities of the

second order.

To sum up : “A simple extension in one set of parallels, and a

simple contraction of equal amount in any other set perpendicular

to those, is the same as a simple shear in either of the two sets

of planes cutting the two sets of parallels at 45°. And the numerical



224 THE THEORY OF OPTICS [CHAP. X

measure of this shear, or simple distortion, is equal to double the

amount of the elongation or contraction (each measured of course

per unit length).” (Thomson and Tait, § 681.)

131.. Components of Strain. Neglecting small quantities of

the second order, the strain represented by the equations (1) may
be imagined to be produced by the superposition of six separate

steps, which are three simple elongations and three simple shears.

Beginning at first with the three elongations, the resulting change

is represented by

We next suppose a change indicated by

i' t' l '6=6 as*-

which according to the previous article is a simple shear of amount

in the plane of xy. By substitution we find, neglecting

squares of small quantities, the total change so far to be given by

£2 — \
1 +

£ + ( 1 4-

**'

i
1 +

dz)
^

If we further superpose shears of amount

a =
dz

+<
dy
™ ^ie P^ane Vz

and ^b =^ ^ in the plane of zx,

we return to the set of equations (1). The six quantities e, f, g, a, b, c,

are called the components of the strain.

132. Homogeneous Stress. “When through any space in a

body under the action of force, the mutual force between the portions
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of matter on the two sides of any plane area is equal and parallel to

the mutual force across any equal, similar, and parallel plane area, the

stress is said to be homogeneous through that space. In other words,

the stress experienced by the matter is homogeneous through any space

if all equal similar and similarly turned portions of matter within this

space are similarly and equally influenced by force.” (Thomson and Tait,

§ 659.)

Consider a unit cube (Fig. 166) subject to homogeneous internal

stresses and in equilibrium. The stress on each of

—i the six sides may be decomposed into three along the

coordinate axes, but as, from the definition of a

homogeneous stress, the forces acting in the same
^^4 —1 direction across opposite faces must be equal, we

Fig. 166. need only consider three faces of the cube. We
denote by Xx ,

Yx ,
Zx ,

the three components of

force acting on the face yz, the index x indicating that the face is

normal to the axis of x. Similarly Xy ,
Yy ,

Zv ,
and Xz , Yz ,

Zz ,

indicate the components acting on the faces normal to the axes of

y and z respectively. If we consider the force which acts on the

cube from the outside, two stresses Xx act in opposite directions on

the two faces normal to OX. If we take Xx to be positive the two

forces tend to produce elongation. Similarly Yy and Zz are stresses

tending to produce elongations along the axes of y and z respec-

tively.

The force Xz (Fig. 167) is a tangential force acting in opposite

directions on two opposite faces, but n^ along

_J
Zx

J f
the same line, so that a couple of moment Xz

I “j ”
is formed. We take Xz to be positive when, as

drawn in the figure, the force acting on a surface

t
L|^ parallel to xy from below is along the negative

' Xz jzi axis of y, the axis of z being positive upwards.

pig But the two forces Zx also form a couple, which

however tends to produce rotation round OY
in the opposite direction, hence for equilibrium, it follows that

Xz — Zx .

The two equal couples Xz and Zx form together a simple shearing

stress. It may be proved in the same manner that

=Xy ,

The six quantities

Xx , Yy ,
Zz ; Yz =Zy ;

Zx = X,\ Xy
= Yx ,

completely define a homogeneous stress. We shall introduce the
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notation of Thomson and Tait, and write for these six components

of stress

P, Q, 22, S, T, U.

133. Shearing stress produced by combined tension and
pressure at right angles. Let ABCD be a section of a cube, which

is subject to a uniform tension P at right angles to

BC, and a uniform pressure at right angles to CD.
No stress is supposed to act at right angles to the

.
plane of the paper. Let H, K, L, M be the middle

^ T c
points of the sides of the square ABCD, and draw

Fig. 168. the square HKLM. If the part HBK is in equili-

brium, a force must act on the plane which is at right angles to the

plane of the paper, and passes through HK. The elementary laws of

Statics show that this force must be in the plane, and that its value

per unit surface is P. The rectangular volume of HKLM is therefore

acted on by tangential stresses of the nature of shearing stresses, or

:

“A longitudinal traction (or negative pressure) parallel to one line

and an equal longitudinal positive pressure parallel to any line at

right angles to it, is equivalent to a shearing stress of tangential

tractions parallel to the planes which cut those lines at 45°. And
the numerical pressure of this shearing stress, being the amount of

the tangential traction in either set of planes, is equal to the amount
of the positive or negative normal pressure, not doubled.” (Thomson

and Tait, § 681.) The caution at the end of the quotation is necessi-

tated by the fact that in the analogous proposition referring to shears,

the amount of the shear is obtained by doubling the elongation, as has

been proved in Art. 130.

134. Connexion between Strains and Stresses. If a simple

shearing stress, as defined in Art. 132, act on a homogeneous body,

it produces a shearing strain, and the ratio of the stress to the strain

is the resistance to change of shape or the “ Rigidity” of the substance.

Calling the rigidity n, it follows that we may put

S=na; T=nb\ U=nc (3)
in isotropic bodies.

The three stresses P, Q,
R produce elongations e, f, g, and there

must be a linear relationship between them. Also by symmetry a
stress along OK must produce the same contraction in all directions

at right angles to itseML Hence A and B being constants, we may
write down at once the equations

P = Ae + B(f+g)
j

Q = Af+B(g + e) l

R = Ag + B(e +/)
J

(4).



THEORIES OF LIGHT 227132-135]

It remains to prove how A and B are connected with the rigidity

and the bulk modulus. If e, f, g are equal

P=Q =R=e{A + 2B).

Hence the stress is uniform.

But the cubical dilatation being 3e and the hulk modulus being

equal to the ratio of the uniform stress P to the cubical dilatation, it

follows that

Sk =A + 2B (5).

As a second special case take B = 0, and Q = — P, which conditions

indicate a shearing stress in planes equally inclined to the axis of X
and Y, and these will cause a shearing strain equal in amount to

P/n. This shearing strain is equivalent by Art. 130 to an elonga-

tion in the direction of P of P/2w, and an equal contraction in the

direction of Q. Substituting e = —f- Pj2n into the first of the

equations (4), we find if <7 = 0

2n = A- B.

Combining this with (5), it follows that

A=k + ^n, B = k-%n (6).

In place of the components of strain, we may introduce their equi-

valents in terms of the displacement (Arts. 129 and 130). Equations

(3) and (4) then become

S=n dy\

dy)>
T = n

dy da\

dx
+
dz) (7),

and p^ +B(f +ndx \dy dz)

o=a^+b(^ +—

\

^ dy \dz dx)

R = A p +B + §?)dz \dx dyj J

(8).

135. Equations of Motion in a disturbed medium. Return-

ing to the stresses acting on the cube in Art. 132, we consider the

case where these stresses are not constant through the volume, but alter

slowly from place to place. If the distance between the two faces of

the cube which are at right angles to the axis ofX is dx, there will be

a force

Xxdydz

acting in the negative direction on the face which is coincident with

the coordinate plane and a force on the opposite face equal to

dXx
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These combine to a resultant

dxdydz.

Similarly the force Xzdxdy acting on the plane xy in the direction

of x together with the force

combine to a resultant

[Xz + dz) dxdy

dxdydz.

and the forces in that same direction are complete when we have

added the resultant

dxdydz

of the two forces which act on the faces which are normal to the axis

of y. If p be the density of the substance, so that pdxdydz be the

mass of the volume considered, and if a be the displacement in the x
direction, the equations of motion may be written down by the laws of

dynamics, leaving out the factor dxdydz on both sides,

d 2a dXx dX dXs

Similarly

<Pa dX dXy
dt2 dx

+
dy

+

d 2
p _ dYx dYy

^ dt
2 dx

+
dy

+

<Py dZx dZy dZn
^ dt

2 dx
+

dy
+

dz

Re-introducing the notation of Thomson and Tait, the equations

become
d2a dP

+
dU dT

dt2 dx dy
+
dz ’

d2P _ dU dQ dS
dt2

=

dx
+
dy dz

’

d 2

y _JT dS dB
dt2 dx dy dz ’

To eliminate the stresses use equations (7) and (8).

Substituting the values of P, Q, A and B from (5), (6), (7) and (8),

and rearranging the terms, we obtain

d2a (d2a d2a d2a\ d fda d/3 dy\\
p 3?

=HW +
df

+
d?)

+ <* + WsU +
Ty

+
7z)

d 2P fd 2P .
d 2p d2B\ „ , , d fda dB dy\

d2a d2a d2d

dx2 + dy2
+

dz2
.

/7 , > d fda d/3 dy
+ (^ + Sn) TZ ( jZ + jZ + J„

d 2
(3 fd

2
(3 P/3 Pp

^ dt2
n
\dx2

+
dy2 + dz2

,

L _|

dad dy
y +

Oy
<

2
d,z

l
,

+ (A + \n)

+ (^ + \n)

da dp dy

dx dy dz,dy \dx dy

d_ fda dp
+ <^y\

dz \dx dy dz) j
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These equations govern wave propagation in all elastic media. We
may obtain from them the characteristic equations for the longitudinal

waves of sound by putting the rigidity n of the medium equal to zero.

When applied to light, the medium is taken as incompressible, so that

da dfi dy

da
+

~dy
+
dz ’

but h at the same time becomes infinitely large. Writing

8 =
do. d/3 dy

dx dy dz ’

and

the equations become

p = A8,

d^ d^
V

dx*
+
dy2

+
dz*'

d?a „ dp\
p

dt*
= nva +

Tx

d?fi 2/3
dp

d\ dp

(10).

These equations, together with certain relations which must hold at

the surfaces of the elastic body, constitute the elastic solid theory

of light.

For plane waves, the displacements are the same at all points of

the wave-front, which we may imagine to be at right angles to the axis

of z. The differential coefficient of a, /3, y with respect to x and y must
therefore vanish. The equations (9) then reduce to

d?a d/a
p
dt*

=n
dj>

cPfi dtp
p df

~ n
dz2 ’ <

>S=(i+ in)
dy
dz2

..(11 ).

The last equation represents a longitudinal wave propagated with

infinite velocity and having no relation to any observed phenomenon

of light. Each of the first two equations represents a rectilinear wave

propagated with velocity Jn/p, a result already deduced by the simpler

but less general methods of Art. 12.

The investigation of wave propagation in crystalline media presents

great difficulties. The simplest hypothesis from a mathematical point

of view is that of assuming that the inertia of the medium may differ

for displacements in different directions. By substituting plt p2 , ps ,

respectively, for p on the left-hand side of equations (9), we obtain

equations which lead to a wave surface which is similar to, but not

identical with, Fresnel’s wave surface. A theory of double refraction
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based on this hypothesis was brought forward by Lord Rayleigh*, but

abandoned because observations made by Stokes, and afterwards by

Glazebrook, decided in favour of Fresnel’s surface. Instead of taking

the inertia as variable, we may adopt the very plausible hypothesis

that the rigidity is different in different directions. Thus different

values of n in the first two equations (11) would give two plane waves

propagated with different velocities, along the axis of z. A general

theory cannot however be formed by a simple modification of the

equations holding for isotropic media. According to Greent, there

may be twenty-one different coefficients defining the properties of

crystalline media, which shows the complication we might be led into if

we wished to attack the problem in its most general form.

136. Equations of the Electromagnetic Field. The line

integral of the magnetic force round a closed curve is numerically

equal to the electric current through the curve multiplied by 4tt.

It is shown in treatises on Electricity that the mathematical expression

of this law is contained in the three equations

:

dy _ d(i
\

dy dz

da. dy

4tm =^-

47TV —
dz dx y

, dp da.
47TW = j- ,

dx dy)

•(12),

where a, /?, y are the components of magnetic force, and u, v, w the

components of current density. The factor 47r depends on the units

chosen, which are those of the electromagnetic system.

Another proposition which embodies Faraday’s laws of electro-

magnetic induction states that if a closed curve encloses lines of

magnetic induction which vary in intensity, an electromotive force

acts round the curve, and the line integral of the electric force round

the closed curve is equal to the rate of diminution of the total magnetic

induction through the circuit. This leads to the equations

da _ dR dQ \
^ dt dy dz

dp _ dP dR
dz

~
tl
di

=
dx .(13),

§y = dQ_ %dP\
^ dt dx dy)

where ya, /x/?, /xy are the components of magnetic induction, y. being

the permeability, and P, Q, R those of electric force.

* Collected Works
,
Yol. i. p. 111.

t Collected Works
, p. 245.
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The two sets of equations may be taken to represent experimental

facts and to be quite independent of any theory. The equations

would be equally true if we considered electric and magnetic forces

to be due to action at a distance.

There are some additional equations to be considered.

Differentiating equations (12) with respect to x, y z respectively

and adding, we find :

du dv dw _ \

di+dy
+
Tz

= 0 {14)'

Similarly we derive from (13), if /a be constant

:

d fda. d/3 dy\ _ _

dt \dx
+
dy

+
dz)

This shows that the expression in brackets is constant as regards

time and we know that in an unmagnetized medium it is zero. Hence

we may write for our present purpose

:

da dfi dy

dx
+

dy
+
dz~ (15).

137. Maxwell’s Theory. The fundamental principle of Maxwell’s

theory lies in his conception of the possibility of an electric current

in dielectrics and the manner in which this current depends on electric

force. His views are best explained by an analogy taken from the

theory of stress and strain. A stress in an elastic solid produces a

displacement : if the stresses increase, the displacements increase,

and the change of displacements constitutes a transference of matter.

Taking this as a guide we may imagine the medium to yield in some

unknown manner to the application ef electric force, and if so, the rate

of change of that force will cause a “
flow ” which according to Maxwell

is identical in all its effects with an electric current.

If the electric force is E, the electric current is proportional to

dE/dt, and if the law that the total flow is the same across all cross-

sections of a circuit holds good for these so-called “displacement

currents ” or “ polarization currents,” it can be shown that the current

is equal to (far^KdE/dt , where K is the specific inductive capacity of

the medium. In a conductor, the current would, according to Ohm’s
law, be CE, where C is the conductivity. If we imagine a medium to

possess both specific inductive capacity and conductivity, we must
introduce an expression which includes both cases and put the current

(16 ).
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Confining ourselves at present to non-conductors and resolving alon£

the three coordinate axes, we have

1 jpr dP 1 j-r dQ 1 rr d'R

lt
;v=a K

~dt
: W^ K

di
(n) -

These equations allow us to combine (12) and (13) so as to obtain

two fresh sets containing respectively only the magnetic and the

electric forces.

138. Differential equation for propagation of electric and

magnetic disturbances in dielectric media.

Equations (12) with the help of (17) become

g dP _ dy dfi

dt dy dz

dQ _ da dy

dt dz dx

g dR _ d[3 da

dt dx dy

Differentiate each of the equations (13) with respect to the time,

eliminate P, Q, R, by means of (18), and use (15), when the following

sets of equations, involving only magnetic forces, will be obtained :

= = (19).

We may eliminate the magnetic forces in a similar manner and

obtain

KllW= v'Q ’ <20)-

These equations show that the magnetic and electric forces are

propagated with a velocity 1/ JKy. In the electromagnetic system of

units, y—1 in vacuo, and differs very little from that value in any

known dielectric. K the specific inductive capacity is, in vacuo,

unity when the electrostatic system of units is employed, but in the

electromagnetic system K is numerically equal to l/v
2
,
if v is equal to

the number of electrostatic units of quantity which are contained in

an electromagnetic unit. This number, which gives the velocity of

propagation of electromagnetic waves in vacuo, may be determined

by experiment, and is found, _within the errors of experiment, to be

equal to the velocity of light in vacuo. Both velocities differ from

3 x 1010 probably by not more than one part in a thousand.

Maxwell’s theory, which is embodied in equations (19) or (20), leads

therefore to the remarkable conclusion that an electromagnetic dis-

turbance is propagated with a finite velocity which is equal to the

velocity of light. This conclusion has been amply verified by the
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celebrated experiments of Hertz. Kirchhoff* had already in 1857

pointed out that a longitudinal electric disturbance is propagated in

a wire with a velocity equal to that of light, but it was left to Maxwell

to discover the reason for this coincidence.

If both the disturbance of light and the electromagnetic wave are

propagated through the same medium with the same velocity, the

conclusion is irresistible that both phenomena are identical in character.

This conclusion constitutes the so-called “Electromagnetic Theory of

Light.” The electromagnetic theory of light establishes for the propa-

gation of a luminous disturbance, equations which in several instances,

as will appear, fit the facts better than the older elastic solid theory,

but it should not be forgotten that it furnishes no explanation of

the nature of light. It only expresses one unknown quantity (light)

in terms of other unknown quantities (magnetic and electric disturb-

ances), but magnetic and electric stresses are capable of experimental

investigation, while the elastic properties of the medium through

which, according to the older theory, light was propagated, could only

be surmised from the supposed analogy with the elastic properties of

material media. Hence it is not surprising that the electromagnetic

equations more correctly represent the actual phenomena. Whatever

changes be introduced in future, in our ideas of the nature of light,

the one great achievement of Maxwell, the proof of the identity of

luminous and electromagnetic disturbances, will never be overthrown.

139. Refraction. We have so far only considered the propaga-

tion of waves in vacuo. According to equations (20), the squares

of the velocities of propagation in two media having identical magnetic

permeabilities, ought to be inversely as their specific inductive capacities.

If therefore K0 be the inductive capacity of the vacuum, Kx that of any

dielectric, the “refractive index” ought to be equal to \TkJK0 . This

relation is approximately verified in the case of a few gases, as shown
in the following table, which contains the square roots of specific

inductive capacities (D) as measured by Klemencict, and the refrac-

tive indices (n) of the same gases for Sodium light, as measured by
G. W. Walker J. Both constants are reduced to a temperature of
0° C., and a pressure of 760 mm.

Nature of Gas. (Z>) (%)

Air 1-000293 1-000293

Hydrogen 1-000132 1-000141

Carbon dioxide 1-000492 1-000451

Sulphur dioxide 1-000477 1-000676

* Pogg. Ann. Vol. c. p. 193 (1857).

t Wien Ber. (2) Vol. xci. p. 1 (1885).

J Trans. Roy. Soc. A. Vol. cci. p. 435 (1903).

S. 16
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The discrepancy for sulphur dioxide is already well marked.

For solids and liquids the relation altogether fails. Thus water

has a specific inductive capacity which is 80 times greater than that

of air, and its refractive index should therefore be equal to 9, or six

times larger than its actual value. But these discrepancies are not

surprising, for we have left a factor out of consideration, which to

a great extent dominates the phenomenon of refraction, and that is

absorption. The theoretical relationship really applies only to waves

of infinite length, but in most cases we know nothing of the refractive

index for very long waves. The subject will be further discussed in

the next Chapter.

140. Direction of Electric and Magnetic Forces at right

angles to each other. If we confine ourselves for the sake of

simplicity to waves, parallel to the plane of ccy, we must take in

equations (13) and (17) all quantities to be independent of x and y :

these equations then become

da dQ dfi dP dy

^di~ Hz'’
lx ~di~~Tz’

fl
di~ 0,

j?-dP _ dfi
t
„dQ _da

'
jT-dP

dt dz ’ dt dz ’ dt

It follows that there is no component of either the electric or the

magnetic force normal to the plane of the wave, and that therefore

the whole of the disturbance is in that plane. If the electric dis-

turbance is in one direction only, so that e.g. Q = 0, it follows that

a = 0, or that the magnetic disturbance is also rectilinear, and at right

angles to the electric disturbance. "We have therefore for the simplest

case of a plane wave, two vectors representing the electric and magnetic

forces respectively, and these vectors are at right angles to each other

and to the direction of propagation.

More generally let the components P and Q of a plane wave-front

parallel to xy be

P= (j>(z- vt) ; Q = f (z - vt),

so that
dIL = _ dL. dQ = _ dQ.V
dz dt

3 V
dz dt ’

or making use of (21)

(22).

Hence
: yvfi = P ;

yva = - Q,

and aP + /3Q = 0.

This shows that also in this more general case the electric and

magnetic forces are at right angles to each other.
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141. Double Refraction. In crystalline substances tlie specific

inductive capacity of a plate may depend on the direction in which

the plate is cut, relative to the axes of the crystals. The currents

which are generated in such substances by a variation of electric

force are not necessarily in the direction of the force, but if P, Q, R be

the electric forces resolved in three directions at right angles to each

other, and if the current in any one direction be a linear function of

P, Q, R, then it may be proved that there are always three directions

at right angles to each other such that the current is in the direction

of the force. If we choose these directions for the coordinate axes,

we may write

1 Tr dPU
~4^r

K
'~dt'

1 jr dQ
V ~^rK*Tt'

1 jnr (UR , v

where Kx ,
K2 ,
Kz ,

are the three principal dielectric constants.

These equations replace (16). The elimination of a between (13)

and (17) now leads to

d2P „ „ d (dP
JSTxi*

df
dQ dR\\

dx \ dx dy dz )

dQ dR\ i

+
dy

+
dzP

+
dQ

+
dR\

dx dy dz JJ

If KX =K2 =KZ ,

dP dQ dR
dx

.(24).

and we are brought back to the equations which have already been

deduced for isotropic media. We proceed to investigate under what
conditions plane waves are propagated in a medium to which equations

(24) apply. If l, m, n, are the direction cosines of the normal of the

plane wave, and V the velocity of propagation, all variable quantities

must be expressible as functions of lx + my + nz— Vt.

We may therefore in the case of a rectilinear disturbance write for

P
> Q> P

>

Paf{lx + my + nz- Vt), Qof{lx + my + nz— Vt),

R0f{lx + my + nz- Vt) (25),

where P0 , Qo, Po are constants defining the direction of the electric

disturbance, the cosines of the angles which the direction of the electric

force forms with the coordinate axes being as PQ : Q0 : R0 .

By substitution, equations (24) become, if we write

Vi = ljs/K\i»-, v2 =l/\fK2 iJ., vi =ll»jK3 {j.

16-2
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and S~IP + mQ + nR
ISv? ^

Q=

R =

v?- V2

mSv 2

v£ - V2

nSv3
a

vs
2 — V2

)

(26).

Multiplying tlie first of these equations by l, the second by m,

and the third by n, and adding, we obtain the characteristic equation

for F,
vpp v 2m2

v-
2n3

_
v 2 - V2 + vf^T2 + vf- V2

~ lf

or subtracting l
2 + m2 + n2 = 1,

l
*

.
,

<— -ft ^97)

This is an equation identical with (4) Chapter viil, and shows

that the electromagnetic wave theory leads to the correct construction

for the propagation of plane waves.

From (26) we also derive

IP mQ nR _( l
2 m3 n2 \

V? v2
3

Vi ~w- F2%2
2 -F2%3

2-FV°~ u*

As P/v*, Qlv
2
,
Rjv 2

,
are proportional to the components of

electric current, we conclude that the electric current is in the plane

of the wave-front.

The substitution of (25) into (13) leads to

V/aol = Urn — Qn,

F/x./? = Pn — Rl,

F/x.y = Ql- Pm ;

from which it follows that

la + mfi + ny = 0,

and Pa + Q]3 + Ry = 0.

Hence the magnetic force is in the plane of the wave, and the electric

force is at right angles to the magnetic force, though not in general, as

will presently appear, in the plane of the wave.

In Art. 87 it was found that if an ellipsoid

v 2x2 + v 2
y
2 + v 2z2 =1 (28)

be constructed, the reciprocals of the two principal axes of any plane

section measure the two velocities of plane waves which are parallel

to the section, and it was proved that this construction leads to

equation (27). This equation has been shown to lead to Fresnel’s
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wave-surface which is therefore now established as a consequence of

the electromagnetic theory. Propositions with respect to wave or ray

velocities which are proved in the same chapter may all be interpreted

in terms of the electromagnetic theory if we take the components of

the electric current u, v, w to correspond to the displacements in the

older theory.

If an electric disturbance is propagated as a plane wave, and a

normal he drawn to the ellipsoid (28) at the end of the vector having

u, v, w as components, the direction cosines of this normal are propor-

tional to Vi% v^v, v-jW and are therefore by (22) coincident with the

direction cosines of the vector representing the electric force. This

electric force is therefore not in the plane of the wave but lies in a

plane which contains the wave normal and the electric current. It has

been shown in Art. 89 that this plane also contains the ray.

142. Problem of refraction and reflexion. A good test of

the adequacy of any theory of light is found in its capability of

dealing with the problem of reflexion and refraction. Reflexion

takes place when a wave falls on a surface at which the properties of

the medium are suddenly changed. If the transition is gradual, there

is no reflexion. A ray of light e.g. enters our atmosphere from outside

and gradually passes into denser and denser layers of air. Though its

path becomes curved by refraction, there is no reflexion, and neglecting

absorption, the intensity of the ray remains unaltered. The fact

that a surface of glass or water partially reflects a ray of light

shows that the transition between the media of different refractive

indices must take place within a distance not much greater than a

wave-length.

Before entering into the relative merits of different theories with

regard to the problem of reflexion, we may deduce some general

results which are independent of any theory. We consider a plane

wave-front having its normal in the plane xy. Its displacements, in

whatever direction they are, must be capable of expression in the

form f{ax + by- ct), for

ax + by — ct = constant

expresses a plane parallel to the axis of z. If 6 be the angle between

the wave normal and the axis of x, and v the velocity of wave

propagation, we have

cos 6 =
a

*J¥+b*’
sin0 =

b

Jcf + b2
' COt 0=—y

b

c

7F+T2
*and V =
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The line of intersection of the wave with the plane #= 0 is

by — ct = constant

and travels forward therefore parallel to itself with a uniform speed

of cjb.

If the plane x = 0 is a surface at which refraction takes place, the

displacement in the refracted wave may be expressed as

F{axx + bxy- erf).

If the displacements are periodic, the periods must be the same in the

refracted and incident beam, hence cx = c. Also the lines of intersection

of the refracted and incident waves with the surface x = 0 must always

be coincident. Hence this line must travel forward with the same

velocity in both waves. This proves that bx = b. The velocity of the

refracted wave is

- Ci _ c
1

Ja? + bx Jax + b2 *

Hence calling the angle of refraction 0X

v _ d

a

x + b2 _ sin 9

vx da2 + b2 sin 6X

This proves the law of refraction. The displacements in the reflected

wave will be of the form

F (
a'x + b'y - c't).

The previous reasoning shows that c' = c, b' — b. Also the velocity

of wave propagation must now be identical with that of the incident

wave. Hence a' = ± a. We must choose the lower sign, as otherwise

the wave would simply return in the original direction. The numerical

equality of a' and a proves the law of reflexion.

143. Reflexion in the Electromagnetic Theory. The problem

of reflexion is comparatively simple if treated according to the electro-

magnetic theory, and we shall therefore begin with it. In the electro-

static or electromagnetic field the electric and magnetic forces have to

satisfy certain conditions at the surface of separation of two media

having different properties. These are in treatises on electricity proved

to be the following : (1) The tangential components of electricforce are

the same on both sides of the surface. (2) The normal components of

electric displacement are continuous. (3) The tangential components

of magnetic force are continuous, and (4) the normal components of

magnetic induction are continuous. Taking the surface x = 0 to be the

surface of separation, we may put with the previous notation these

so-called surface conditions into the form:

K
T£

= Kl
llt-

Q*QU B = Jl, (29),

P* = /3 = A, y = yx (30).
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The right-hand sides of all equations apply to the second medium
which we shall refer to as the lower medium, taking the axis x positive

downwards.

These six equations are not all independent. The continuity of

Q and R involves the continuity of their variations in any tangential

direction and hence the first equation (13) shows that the continuity

of normal magnetic induction is secured. Similarly the continuity of

the tangential components of magnetic force leads to the continuity of

the normal electric current as shown from the first of equations (18).

We may therefore omit the first of equations (29) and (30) as being

contained in the others
;
nevertheless it is often convenient to introduce

them.

If the wave-front be parallel to the axis of z

dPjdz = 0 .

Also writing without appreciable error n1 = [i, for all transparent media,

the continuity of ft is satisfied according to (13) if dRIdx is continuous.

We may therefore replace the surface conditions by the following five:

KP =KXP1} Q=QU R = RX
)

dR^dRj dQ_dP_ = §Qx _dP1 \ (31).

dx dx * dx dy dx dy J

We now take the incident beam to be plane polarized and first treat

the case that the electric force is at right angles to the plane of inci-

dence which we take to be the plane of xy. Therefore P = Q = 0, and

the surface conditions reduce to

R = RX
)

dR_ dllS (32).

dx dx

)

For the electric force in the incident wave we may write e
i{ax+by~ct

)

and for that of the reflected wave ^i(-aa!+b3/_ci)
,
where the real parts

only are ultimately retained. A change of phase will be indicated by a

complex value of r, or by a negative sign if the change is equal to it.

If s is the amplitude of the transmitted beam, we have therefore

Jl — e
i((M}+by-ct) + ygH-ax+by-ct)

Jl — se
i(aiX+by-ct)

in the upper and lower media respectively.

The surface conditions give at once for x = 0

1 + r = s,

a (1 — r) = axs,

_a-ax

a + ax

_ cot 9 - cot 9
1

cot 6 + cot 9X

_ sin (91
- 6)

sin (#i + 0)
' ’

(34).
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The square of this expression correctly represents the observed intensity

of the reflected beam, if the incident beam is polarized in the plane of

incidence. We conclude that the electric force is at right angles to

the plane of polarization, a result in accordance with the conclusion

arrived at in the study of double refraction.

If we take the incident beam to be polarized at right angles to the

plane of incidence, It
,
a, (3 vanish, and the surface conditions become

KP =KXPU Q = Q1
)

dQ_dP = dQ
1
_dP\ (35).

dx dy dx dy I

The last equation secures the continuity of y. But the form of

our assumed disturbance shows that dy/dy = iby and hence if y is

continuous so is also dy/dy and vice versa. Also according to (18)

KdP/dt = dy/dy, when (3 = 0 : the first and last surface conditions are

therefore identical and we may disregard the latter.

If WF (Fig. 169) be the incident wave-front, the displacement is

now in the plane of the paper and parallel to the

wave-front. Let the direction indicated by the

arrow be that in which the displacements are

taken to be positive. W'F' represents the

reflected wave-front, and we may again arbi-

trarily fix that direction for which we shall take

the displacements to be positive.

It is obvious that for normal incidence there is no distinction

between this case and the one already considered when the displace-

ment is at right angles to the plane of incidence. It is therefore

convenient to take that direction as positive which agrees with that

of the incident wave when the incidence is normal. The arrow

indicates the direction. Similarly for the transmitted wave WXFX .

Taking the amplitude of the incident beam again to be unit amplitude,

and resolving along OX and OY, we may put in the upper medium

P = — gin 6 q.
gjj^ Q ^,(—aa:+by—ct)

*

Q = cos 0g<
(
aas+6»-<*) + r cos eei ^-ax+by~ ct

\

and in the lower medium
P1 = — s sin 61 e

{̂ x+by~ ct

\

Qj = s cos 0ie^x+by- ct
K

The condition KP =K\Pi for x= 0 gives

(1 — r) . . ssm0!
'

—

tt1 sin 6 =
2
—1

,
'IT Vi

or (1 - r) sin 6
1 = s sin <9,

and the condition Q = gives

(1 + r) cos 6 = s cos #i.

These are the only conditions that need be satisfied.
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Eliminating s we obtain

(1 - r) sin 01 cos 0i = (1 + r) sin 0 cos 0

,

sin cos 6X — sin 0 cos 0
y ~ . j

sin cos 0X + sin 0 cos 0

__
sin 20i -sin 20

~~
sin 20x + sin 20

__ tan (0! - 0
)

tan (0i + 0)
(36).

This again is a formula agreeing with observation, at any rate as a

first approximation. The application of the equations (34) and (36)

to the cases of oblique polarization or unpolarized light has already

been discussed in Art. 27 as well as the observed departures

from (36).

It has often been suggested that the experimental deviations from

the tangent law may be due to the fact that the transition between the

two media is not sudden but takes place within a layer comparable in

thickness with the length of a wave. L. Lorenz* first investigated the

question and showed that a thickness of from the tenth to the hundredth

part of a wave-length is sufficient to cause the observed effect. Drudet,

treating the same subject from the standpoint of the electromagnetic

theory, has arrived at similar results, a thickness of the transition layer

of *0175 A. being found to be sufficient in the case of flint-glass to

account for the elliptic polarization observed near the polarizing

angle];.

144. Reflexion in the elastic solid theory. In elastic solids

the conditions at the boundary are obtained by the consideration that

as a tearing of the medium can only take place under application of

forces which exceed the limits of elasticity, the displacements on both

sides of the boundary must be the same, while the medium is performing

oscillations under the conditions of perfect elasticity.

A second condition is imposed by the third law of motion. The
stresses must be continuous. The continuity of stress together with

that of displacement satisfies also the requirements of the law of

conservation of energy, as the work done across any surface is the

product of stress and rate of change of displacement.

The components of displacement which we had previously called

a, /?> y, shall, in order to distinguish them from the magnetic forces for

which we have introduced the same letters, now be designated by

£ v, C
* Pogg. Ann. cxr. p. 4G0 (I860) and cxiv. p, 238 (1861).

+ Lehrbuch der Optik
, p. 206.

I The most complete investigation of the subject has been given by Maclaurin,

Proc . Boy. Soc . lxxvi. p. 49 (1905).
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The continuity of displacement introduces the conditions

£=€u v = vi, £=ti>

where the right-hand sides refer to the lower medium.

The stresses on a surface normal to the axis of x are, by Art. 134,

P =A^ + s(p + §);ax \dy dzj

T-n d'C d£\ TT

dx
+
dz) ’

U~ n
d£ dv\

dy dx) ’

where A = Z; + fw ;
B = Jc- fn.

Writing m = k + ^n, we obtain for the conditions of continuity of

stress

where mly n1} define the elastic properties of the second medium.

Let the plane of xy be the plane of incidence, and the vibrations of

a plane wave be at right angles to that plane. All displacements

vanish except £, and £ is independent of z. Hence the equations of

continuity reduce to

£ = £ij
dt dtin
dx

Ul
dx

The equation of motion in the upper medium is, according to (9),

dK = n(<n tf£\

dt2
p \dx2 + dy2

)
*

with a similar equation for the lower medium.

But £ = 0
i
(
ax+hy~ ct

) + rrf{-aB+by-et)

£ — seH<*i
<e+by-ct).

For x = 0, the surface conditions give

1 + r = s,

net (l— r) = n^s,
and eliminating s,

a
,_na- _ n cot 9 — nx cot 61

/
,OQ ^

na + nxax n cot 9 + n
1
cot 91

^

For the velocity of wave propagation in an elastic solid, we have
v^ — njp. Different wave velocities in different media may either be
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due to differences in the rigidity or to differences in density. Hence

we must distinguish the two cases.

Case I. n - n1 .

Equation (33) becomes
cot 9 - cot 9,

tp — 1

cot 9 + cot 9X

__
sin (9X — 9)~
sin (9 + 9X

)

'

This agrees with the result obtained in the electromagnetic theory

if the displacements are made to correspond to electric force.

Case II.

— .
wi _ _ sin

2

0 0* ’ n v2
sin

2 9

'

Equation (33) now gives

_ sin2 9 tan 9
1
— sin

2 9X tan 9
r

sin
2 9 tan 9X + sin2 9X tan 9

_ sin 29 - sin 29X~
sin 29 + sin 2 9X

_ tan (9 — 9X)

tan (9 + 9X)

’

This is the equation for the reflected light when the incident wave

is polarized at right angles to the plane of incidence. Hence if different

media differ by their rigidities, the reflexion of light vibrating at right

angles to the plane of incidence can only be accounted for by supposing

that the plane of polarization contains the vibration.

To work out completely the more complicated case that the

vibration lies in the plane of incidence, we must transform the equations

of motion.

In equations (9) alter the notation, put £= 0, and let £ and 17 be

independent of z, this being the condition that the wave normal lies

in the plane of xy. The equations then become

p df

d*£

_ d fd£ drj
m
dx \dx

+
dy

d^£ d?l
dx?

+
dy 1

Similarly

d?£ , . d (d£ dy
P

dtf
+ W

dx \dx
+

dy,

d2
y d (d£ dy

p dC~(m + n
^ dy \dx

+
dy.

d /d£ dy

dy \dy dx,

d fd£ _ dy

dx \dy dx

...(39).

Introducing two new functions such that

* _ d<t> # .

dx dy ’

d4> df
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we find that (39) may be satisfied by

From (35) it appears that the displacements $ and y, due to changes

of <f>, are at right angles to the surface 4> = constant, while the dis-

placements due to changes in xp lie in the surface xp = constant. If we

adopt the same form of solution for cf> and xp, it is the latter function

which gives the motion which we require for the propagation of light

in which the displacements are in the wave-front. We put therefore

for the incident wave \p = ei{fm+hy
~ ct

\ and assume for the form of

solution generally,

In the upper medium:

^ _ e
i(ax+ly-ct) + r(

,i(-ax+hy-ct)\

} (42).

In the lower medium:

fa = se
fKx+tyy-ct)

fa = ga*(«.
/»+6»-«t

)J

Substituting these values in equations (41) we obtain

.} .(43).

&=- (a
2 + W) = - (ax

2 + b
2

) = (a* + b
2

)
P Pi P '

mx + nx

Pi
(a/

2 + &2) (44).

From the first two equalities we obtain as before the law of re-

fraction, but as m and m1 are indefinitely great the last equalities give

a'
2 +b2 = 0; ax

2 +b2 = 0 (45).

For the same reason

d2
<f> d2

<f>

doc
1 + dy2

d2
4>i d2

fa

dx2 dy2 .(46).

This shows that the motion due to <j> is that of an incompressible

liquid. As <jf> represents the velocity potential, the motion is irrota-

tional. Also by substitution of (45) into (42) and (43) retaining only

the real parts

:

<j> = cos (by - ct),

fa = qe^ cos (by— ct).

The displacements in so far as they are due to <f> are

bpe~hx cos (by - ct) (upper medium),

— — bqe~bx cos (by - ct) (lower medium),
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and ^ = - bp& bx
sin (by - ct)

= - bqe~bx sin (by - ct)

(upper medium),

(lower medium).

• • *

The motion vanishes for normal incidence as b = -r- sin 8.
A

Unless 8

is small, the exponential factor shows that the motion quickly diminishes

with the distance from the refracting surface.

The surface conditions are

£=£i; v=vi\
dr\

(» + »)£ + + + (nn-nOdx

or in terms of 0 and 0

dx
dyi

dis'

, s d
2

<f> f \d 2
(f> d 2

ip .

(

m

+ n) + (vn — n) + 2n = similar expressions,

or introducing (46)

n
1

2

e?
2
0 <#

20 d2
<f>) . ..

+ -rv — -^rgj = similar expressions.
dxdy dx1

The quantities p, q, r, s may now be obtained by substituting

4>, ip, 0i, 0i from equations (42) and (43). Green* to whom the above

investigation is due, assumes n = nu and Rajdeighf has put the solution

for r in that case into the form

where M= ~—

}

W +

1

3 _cot
2
(8 + 8’) + M*

r
cot +

and
i*.

is the refractive index.

If two media do not differ much in optical properties, so that the

refractive index is nearly equal to one, we obtain for the ratio of

amplitudes the expression

tan (8 — 8')

tan (8 + 8’) ’

as required by experiment when the vibration takes place at right

angles to the plane of incidence.

As has been pointed out above, the tangent formula is only

approximately correct, but the deviations are not so great as those

which Green’s formula would lead us to expect, and are sometimes in

the other direction.

The alternative according to which differences in optical properties

are due to differences in elasticity, leads to results which can in no way
be reconciled with observed facts. If we place ourselves on the stand-

point of the elastic solid theory, we are therefore compelled to conclude

* Collected Works, p. 245. f Collected Works, vol. i. p. 129.



246 THE THEORY OF OPTICS [CHAP. X

that the rigidity of the aether is the same in all media. Even then

we arrive at an unsatisfactory result so far as light polarized at right

angles to the plane of incidence is concerned.

145. Lord Kelvin’s theory of contractile aether. Ac-

cording to the most general equations of the motion of an elastic

substance (Art. 135), a disturbance spreads in the form of two waves,

the condensational longitudinal wave propagated with a velocity

V (Jc + in)Ip and the transverse distortional wave propagated with

a velocity *Jn/p. The phenomena of light leave no room for a

longitudinal wave propagated with finite velocity. The theories so far

considered avoid the difficulty by taking the elastic body as incom-

pressible, when the coefficient Jc becomes infinitely large, and the

longitudinal disturbance is propagated with infinite velocity.

This elastic solid theory of the aether which has been discussed in

the preceding articles, does not, as appeared, consistently lead to facts

which are in agreement with observation : it fails to account for the

laws of double refraction and for the observed amplitude of light

reflected by transparent bodies. That theory was therefore considered

dead, until Lord Kelvin* resuscitated it in a different form by showing

how, dropping the hypothesis of “solidity,” an elastic theory of the

aether may still be a possible one.

The characteristic distinction of the new theory lies in the bold

assumption that the velocity of the longitudinal wave, instead of being

infinitely large, is infinitely small. This requires that k + §n shall

be zero, so that k is negative. A medium in which there is a negative

resistance to compression would at first sight appear to be essentially

unstable, but Lord Kelvin shows that the instability cannot come into

play, if the aether is rigidly attached to a bounding surface. So long

as there is a finite propagational velocity for each of the two kinds of

wave motion, no disturbance set up in the medium can lead to

instability. Putting therefore the constant A of Article 134 equal

to zero, and taking the rigidity to be equal in all media, Lord Kelvin

has shown that the theory leads to Fresnel’s tangent formula for the

amplitude of light polarized in a plane perpendicular to the plane of

incidence. Glazebrookf then showed that the consideration of double

refraction leads to Fresnel’s wave surface, while J. Willard Gibbs £

pointed out that the new form of elastic aether theory must always

lead to the same equation as the electromagnetic theory, provided we
replace the symbol which denotes “displacement” in one theory by that

which denotes “ force ” in the other and vice versa.

* Phil. Mag. xxvi. p. 414. 1888.

f Phil. Mag. xxvi. p. 521. 1888.

J Phil. Mag. xxvii. p. 238. 1883.
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If in equations (9) we write k = - i^n, and allow different values of

P according as the displacements are in the direction x, y, or z, the

equations become with our present notation

'di;
.

drj d£\\Pi d?£ _ it _ d_
_j_ _

n dtf ^ dx \dx
+
dy

+
dz

)

P2 d?y _ 2 _ d^ ?d£ dy_ dt

n di?
^ ^ dy \dx

+
dy

+
dz.

Pa _ _2/ _
Jj.2

~ V fc

dji +
d£

dy dz

.(47).

d_/d£

n df v * dz \dx

These equations are identical with (24) provided that we replace

P, Q, R in the latter by $, y, £, and /x, Ku AT2 ,
Kz by 1jn, pu p2 , p3 ,

respectively. As regards surface conditions, we must now remember

that the resistance to compression being negative, there may be

infinite compression or dilatation at any point or surface at which

a condensational wave tends to start. The surface at which reflexion

takes place gives rise according to the preceding article to con-

densational waves, hence disregarding this wave which can only be

propagated with zero velocity, the conditions which hold in the general

elastic theory, in which the condensational wave is considered, are not

necessarily satisfied. They must be replaced by others, which, as

J. W. Gibbs has shown, may be obtained directly from the equations

of motion.

Introduce new quantities defined by

<U_dt
dz dx ’

d£ d£
dx dy

'

Performing the differentiation so as to obtain £", y", £" in terms of

£, y, £, we arrive at the expressions which stand on the right-hand side

of (47) with the sign reversed. We take the boundary to be normal to

the axis of x. If y and £ were discontinuous at such a boundary,
7 t~ and would be infinitely large, and this would make y and £",

d?y d2
t

and consequently also infinitely large, which is obviously not

admissible. Hence we conclude that y and £ are continuous. A
similar reasoning shews that as y and £ must remain finite, y and £

must be continuous. The conditions of continuity are therefore

V = Vi'> £=£1 ,

p _ dt _ dry

~ dy dz’

t„ =d£_W
dy dz ’ dz dx

V
g, _ dy d£

dx dy *

w's c.o dy d£
~ 777. 177.
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But these are exactly the conditions which we have seen must hold in

the electromagnetic theory if % £ are replaced by P, Q, B. The
analogy is made complete if it is noticed that the continuity of £' and
£" follows from the above equations, and that according to the first of

equations (47) if v
}
= s/njp,

JL dH _ _
V df * '

The continuity of $" is seen to involve the continuity of the normal

force and this corresponds to the continuity of electric displacement in

the electromagnetic theory.

The analogy has therefore been proved both for the equations

regulating the motion of the medium and for the surface conditions.

If this analogy is kept in view, all the results which have been
found to hold in the electromagnetic theory may be translated at once

into consequences of the contractile tether theory. Thus in the theory

of double refraction, the displacements of the latter theory are not in

the wave surface, but are normal to the ray as has been shown for

the electric forces in Art. 136. Similarly adopting the contractile

aether theory we may conclude that when plane waves are propagated

through a doubly refracting medium the elastic force and not the dis-

placement is in the plane of the wave. I have given a statement of this

theory on account of its mathematical interest, but it was ultimately

abandoned by its author*.

146. Historical. Augustin Louis Cauciiy, bom August 21st,

1789, in Paris, died May 23rd, 1857, at Sceaux, near Paris, was one

of the large number of celebrated French mathematicians who, during

the end of the 18th and the beginning of the 19th century, made the

first serious advance in Mathematical Physics since Newton’s time.

Cauchy’s contribution to the theory of light consisted in initiating

the endeavour to deduce the differential equations for the motion of

light from a theory of elasticity. This theory was based on definite

assumptions of the actions between the ultimate particles of matter.

The luminiferous aether like other matter was supposed to be made up
of distinct centres of force acting upon each other according to some
law depending on the distance. Cauchy explained the phenomena of

dispersion by supposing that in the media in which dispersion takes

place, the distance between the ultimate particles is no longer small

compared with the wave-length. He thus arrived at a formula which

for a long time was considered to represent satisfactorily the connexion

between wave-length and refractive index (Art. 153). Cauchy also

showed that metallic reflexion may be accounted for by a high

* Baltimore Lectures
, p. 214.
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coefficient of absorption: by interpreting Fresnel’s sine and tangent

formula, in the case where the index of refraction is imaginary, he

obtained the equations for the elliptic polarization of light reflected

from metallic surfaces, which are still adopted as correctly representing

the facts.

George Green was born at Sneinton, near Nottingham, in 1793,

and only entered the University of Cambridge at the age of 40.

Having graduated in 1837 as fourth wrangler, he was elected to a

fellowship in Gonville and Caius College in 1839, and died in 1841.

The following paragraph which stands at the head of his celebrated

Memoir on the Reflexion and Refraction of Light will show the ideas

which guided him in his work.

“M. Cauchy seems to have been the first who saw fully the

utility of applying to the Theory of Light those formulae which

represent the motions of a system of molecules acting on each other

by mutually attractive and repulsive forces ; supposing always that

in the mutual action of any two particles, the particles may be

regarded as points animated by forces directed along the right line

which joins them. This last supposition, if applied to those compound

particles, at least, which are separable by mechanical division, seems

rather restrictive
;

as many phenomena, those of crystallisation for

instance, seem to indicate certain polarities in these particles. If,

however, this were not the case, we are so perfectly ignorant of the

mode of action of the elements of the luminiferous ether on each

other, that it would seem a safer method to take some general physical

principle as the basis of our reasoning, rather than assume certain

modes of action, which, after all, may be widely different from the

mechanism employed by nature
;
more especially if this principle

include in itself, as a particular case, those before used by M. Cauchy

and others, and also lead to a much more simple process of calculation.

The principle selected as the basis of the reasoning contained in the

following paper is this : In whatever way the elements of any material

system may act upon each other, if all the internal forces exerted

be multiplied by the elements of their respective directions, the

total sum for any assigned portion of the mass will always be the

exact differential of some function. But, this function being known,

we can immediately apply the general method given in the Mecanique

Analytique, and which appears to be more especially applicable to

problems that relate to the motions of systems composed of an immense

number of particles mutually acting upon each other. One of the

advantages of this method, of great importance, is, that we are

necessarily led by the mere process of the calculation, and with

little care on our part, to all the equations and conditions which are

17s.
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requisite and sufficient for the complete solution of any problem to

which it may be applied.”

The function introduced above by Green we now call ‘'Potential

Energy,” and a particular interest attaches to the whole paper, as it

is the first instance of the application of the principle of Conservation

of Energy to a great physical problem. Green shows that in the most

general case, there may be twenty-one different coefficients defining

the elastic properties of a medium, and that these reduce to two in

the case of an isotropic or uncrystallized medium. The conditions

which hold at the surface of two media are deduced, and for the first

time strict dynamic principles were applied to the calculation of the

amplitudes of the reflected and refracted light. Assuming the dif-

ference in the optical behaviour of different media to be differences

of density, the Fresnel sine formula is obtained for light polarized in

the plane of incidence, and it is shown that for light polarized at right

angles to the plane of incidence, the tangent formula can only hold

approximately. In a further paper “ On the propagation of light in

crystallized media,” we meet the difficulties which have so long beset

all attempts to account satisfactorily for Fresnel’s wave surfaces, and

though this paper will still be read with advantage, its interest at

present is only historical.

George Gabriel Stokes, born August 13th, 1819, at Screen in

Ireland, graduated as Senior Wrangler in 1841, and was elected to the

Lucasian Chair of Mathematics in Cambridge in 1849. He died on

February 1st, 1903. His celebrated Memoir “On the Dynamical

Theory of Diffraction ” contains the complete solution of the problem

of the propagation of waves through an elastic medium. The question

is treated in so masterly a manner that though published in the year

1849, the paper should still be carefully studied by every student of

Optics. He published other important optical memoirs, of which the

following may specially be quoted : “On the theory of certain bands

seen in the spectrum ” (1848) ;
“ On the formation of the Central

Spot of Newton’s Rings beyond the critical angle” (1848); “On
Haidinger’s Brushes ” (1850) ;

“ Report on Double Refraction ” (1862).

Many of his writings on the theory of sound and hydrodynamics

have also optical applications. Stokes was the first to recognize the.

true nature of fluorescence, only isolated facts as to the luminescence

of certain substances under the action of light having been previously

known. He made a thorough experimental investigation which proved

the possibility of a change in the refrangibility of light {Phil. Trans.

1852 and 1853).

James Clerk Maxwell, born June 13th, 1831, at Edinburgh, died

at Cambridge November 5th, 1879, was the first occupant, of the
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Cavendish Professorship of Physics at Cambridge, which he feed from_

the date of its foundation in 1871 to the time of his death.\\%
one of the most original minds who ever turned their att0tif$$n to

scientific enquiry. All mathematicians who, previous to Maxwfl^]1£aj?h
v ,

discussed the undulatory theory of Optics, started from the efiftsfeso^,

.

solid theory of the luminiferous aether. That theory was able to give

a satisfactory account of a great number of the phenomena of light

and was considered to be securely established. The phenomena of

electricity were treated as independent facts, though no doubt many
physicists held that ultimately electric action would be explained

by the stresses and strains of the same medium which transmitted

light. No one had, however, suggested properties of the medium
different from those of an ordinary elastic solid. Maxwell attached

the question with great originality from another point of view.

Having asked himself the question, what the properties of a medium
must be, in order that it should be capable of transmitting electric

actions, he discovered that this electric medium was capable of

transmitting transverse vibrations with the velocity of light. Maxwell
also showed how Fresnel’s wave-surface in double refracting media
could be obtained by assuming that, in such media, there may be

three dielectric constants, the polarization measured along three axes

at right angles to each other being different. Of his other optical

writings, his memoir “On the theory of Compound Colours and the

relations of the Colours of the {Spectrum” {Phil. Trans. 1860) de-

serves special mention.

/'.Mr-

17—2



CHAPTER XI.

DISPERSION AND ABSORPTION.

147. Wave-fronts with varying amplitudes. We liave

hitherto confined our attention to vibrations having the same ampli-

tude along each wave-front. In other words, the surfaces of equal

phase were coincident with the surfaces of equal amplitude. We
shall now treat the question in a more general manner, starting from

the differential equation of the wave propagation in an absorbing

medium which, as we shall see, may be put into the form

dm wdR_dm, dm fr .

dtf
+

dt dx2
+

dy2 + dz2 ’

where G and F are constants and R represents the displacement in the

elastic solid theory or the electric force in the electromagnetic theory

measured in the z direction. If the wave-front is plane and parallel

to the axis of z
,
R is independent of z. If the disturbance is simply

periodic, so that the time only occurs in the form of a periodic factor

pe~ iuit
,
where p may be real or imaginary or complex, equation (1) is

equivalent to

- (iFo> + Gf)R = d
2R
dx2 +

dm
dy2 *

or
dm dm

•(2),dx1 dy2

where S2 depends on the constants of the medium and on the frequency

;

S2
is real when F is zero and only in that case. For a particular

solution of (2) and therefore of (1), we have

R =R0e^
ax+ by~ uf> (3).

The substitution of this value of R into (2) leads to the condition

a2 + b2 = $2
(4),

showing that a2 + b2 must be independent of the direction in which the

wave is propagated. If a and b are both real, there is no absorption

and we may put

a = It cos 0, sin 0; ft)

2irV

X *
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where A' is the wave-length in the medium. The planes of equal

phase are represented by

x cos 0 + y sin 6 = constant.

Let, in the more general case, a and b be complex and write

therefore

a ~^r cos 0 + kxiy

b =^ sin 9 + k2i.

Then (3) may be written, retaining the real parts,

O-jr

B = B0e~^
x+lc^ cos -y (x cos 6 + y sin 9 — vt) (5).

The amplitude is the same over planes satisfying the equation

kxx + k2y = constant,

but these planes do not necessarily coincide with the planes of equal

phase. We have, however, still to satisfy the condition (4). It will

be convenient here for the sake of obtaining symmetrical expressions

to write

j
2vr

kx
— k COS a,

j 2TT

k2 = -T- k sin a,
A

where A is in vacuo the wave-length corresponding to a given w, i.e.

A= 2ttV/o)(V being the velocity of light in vacuo). We also write

V A

V“x> = ' (6) -

Hence a = -^-(v cos 6 + in cos a),

b = {v sin $ + %K sin a),

A 7

a2 + 6
2 = {v

2 — k 2 + 2ivk cos (0 — a)} (7).

In perfectly transparent media a2 + b2
is real, hence k = 0 or

cos(0 — a) = 0. The first alternative leads to the case already dis-

cussed, of waves of equal amplitude. But the second alternative shows

the possibility of waves of unequal amplitude being transmitted as

plane waves, provided that the surfaces of equal amplitude are at

right angles to the surfaces of equal phase. If we take the axis of x

for the direction of propagation, (5) takes the form

2tt
(

B =jU0e
A

Ky
cos (x - vt)A (8 ).
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One important and somewhat unexpected result follows : The

velocity with which the wave-front proceeds depends on the variation

of amplitude along it. This is shown hy (7) for

$2 = a2 + 62-^V-K2
)

*>=-r^ + K a
= V,

2 + K2,

if vt he the particular value which v takes when k is zero. It now

follows from (6) that for v the velocity of the wave-front we have

V
v =—j=.

The velocity with which a disturbance is transmitted is represented

by the ray velocity F/vx which must of course always be the same in

the same medium. But our investigation is important as showing that

even in vacuo the ray need not be at right angles to the wave-front,

and that if this is the case the velocity of the wave-front is not the

velocity with which a disturbance is transmitted. If be the angle

between the ray and the wave normal

cos <£ :ouo vp — —
i

•

V fv* + K2

In order to obtain an idea of the magnitude of the effect, assume 4> to

be equal to 1°
;
a short calculation then show's that the amplitude along

the wave-front must be reduced in the ratio of e : 1 along a distance

equal to the 200th part of a millimetre. A more interesting case arises

when k and therefore *i and *2 are imaginary, the amplitude of the wave

represented by equation (5) is then a periodic function of x and y, and

the rate of propagation becomes V/(r2 - *2
)^. Such waves have been

called “corrugated waves” by the late Lord Rayleigh*, who has made use

of them in some of his investigations on the theory of gratings. When
absorption takes place #2

is no longer real. Substituting for that

quantity its value in terms of F and G, and combining (4) and (7), we

find

2vk cos p - ~ FV

J

where p represents the angle between the planes of equal phase and the

planes of equal amplitude.

Both v and * now depend on the angle p, and I shall write v0 ,
k0 for

the values of v, k in the particular case where p = 0.

When a plane wave falls normally on an absorbing medium, all

parts of the transmitted wave-front have passed through the same
* Collected Work$

9
Yol. hi. p. 117.
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thickness of the medium. Hence in that case, the wave-front is also

a surface of equal amplitude and p = 0. If the wave-front is normal

to the axis of at, so that sin 6 = sin a = 0, (5) becomes
2ff

B =B0e
K

K°x
cos 2?r {x - vt) (11).

As v0 ,
k0 may he calculated from (10), and in this case v = Vjv0 , all

quantities are determined. k0 is called the coefficient of “extinction.”

When the light falls obliquely on the surface the planes of equal

amplitude remain parallel to the surface but the planes of equal phase

become inclined to the surface at an angle p which is the angle of

refraction. The expression for the disturbance becomes

2jt—
J/ *B =B0e

A cos 2it
^

(a> cos p + y sin p — vt).

Both k and v depend on the angle p, but (10) shows that v
2 —

k

2

and vk cos p are constant, which gives the relations

- „ 2
.V K = K

VK COS p = V
0
K
0

.(12).

Ketteler, who first realized the importance of these equations,

called them the principal equations of wave propagation in absorbing

media. The optical distance between two points on the same wave

normal, at a distance d apart, is -j- vd, and we may call v the

coefficient of optical length.

We obtain from (10)

v0
2 -k0

2 = GV2

l
2v0

k
0 = FV3/m)

(13).

148. The laws of refraction in absorbing media. Let the

disturbance of the incident light be proportional to

i(a%+by-o)t)
t

& }

the refracted disturbance will be proportional to

e
iidiX+by-uit)

9

the identity of the coefficients b and w on the two sides of the

separating surface being proved, as in the case of transparent media.

If A./v is the wave-length of the transmitted light and p the angle

of refraction

sin 6 = v sin p,

v2 cos
2
p = v2 — sin

2
6.

Equations (12) may now be written

j/
2 - K2 = v

0
2 - k

0

2
,

v2 k2- k2
sin2 6 = v

0

2 k
0
2
.

or
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Solving these we find

2v2 = V(v0
2— k0

2 — sin2 &)-+ 4v0
2 k0

2 + (i/#
3 _ K

0
2 +sirr

2k 2 = J(v
2 — «-

0
2-sin2

$)
2 + 4v

0
2
/c
0

2 — (i/0
2 - k

0

2—sin20)j

These equations represent Ketteler’s law of refraction for absorbing

media. Having found v for a particular incidence 6 by means of

the first of equations (14), p = sin
-1

(v
_1

sin 0) gives the angle of

refraction.

In the case of transparent media, the wave velocities in the

two media are c/\fa
2 + b

2 and cj \!a? + 62 respectively, and the re-

fractive index is

/* =
a 2 + b2

a2 + b2
(15).

We shall take this equation to be a definition of the symbol p also

in the case of opaque media. Though p is now a complex quantity

and has no physical meaning, it is useful as an intermediate variable.

Let the first medium be transparent, so that a2 + b2 = 47r
2/A2

.

Applying equation (7) to the second medium, and noting that 6 -a is

the angle we now denote by p, while a must be replaced by alf we
find

:

/* = ai
= V ~ K

) + cos p

= l
'o
2 - « 2 + 2ix0 v0 ,

.*. p. = v0 + iK0 (16)

The constants v
0
and k

0 are therefore derived directly from p, being

respectively its real and imaginary part.

We associate with p an unreal angle 0X defined by

sin 6 = psin

From this we obtain

p? cos2 = p
2 — sin

2 0

= v2 - k2 + 2 ikv cos p — sin
2 6

= v
2
cos2 p-K2 + 2i«v cos p

= (

v

cos p + «k)2
,

sin 0 cot 0X =m + ik (17).

where m = vcosp (18).

149. Free and Forced Vibrations. A particle attracted to

a fixed centre by a force varying as the distance, was proved in

Chapter i. to perform simple periodic oscillations. We may extend the

investigation now, by admitting the possibility that the motion of the
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particle is resisted by some frictional force which acts in proportion

to its velocity. The path being rectilinear, the equation of motion is

z + 2kz + n2z = 0,

having for solution

z = Ae~m cos {Jn2 — k1
. t — a\ (19),

where A and a are two constants of integration to be determined by

the initial conditions of motion. It will be noticed that the interval

between two successive maxima of displacement is increased by the

friction and that each maximum is smaller than its predecessor. The

motion is no longer simply periodic.

If the friction be so great that n2 - k2
is negative, the form of the

solution alters and the motion becomes “ aperiodic,” but for our present

purpose, we may leave this case out of account. When k is small, the

period may be expressed in terms of a series

2ti- 0 fl k2
"I

-s!W^k2
7r L +

2^
+
-J’

which shows that the most important term involving k depends on its

square, so that even though we may take account of effects depending

on the first power of k, the period is not affected by friction if we may
neglect the second power. Equation (19) represents the motion which

the particle assumes when unacted on by external forces, and is there-

fore called the free vibration.

Let the same particle be now subject to an additional periodic

force of period 27r/w. Its equation of motion becomes

z + 2kz + r?z =E cos <at,

where, m being the mass, Ecos utjm is the force. The complete solu-

tion now is

cos («£-«) + Ae~u cos {sin2 -]? . t-a] ...(20),

where tan e = (21).n-<?
The second term represents the free vibration which gradually

dies out, leaving permanently the “forced” vibration which is re-

presented by
E sin c . . /nnXZ = - COS (a)t - c) (22),

and which must now be investigated somewhat more closely.

If n><.o, i.e. if the forced period be greater than the natural period,

e lies in the first quadrant, and the forced vibration is, as regards phase,

behind the force. If, on the other hand, n<<n, the forced vibration is

accelerated as compared with the force.
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If the forced and free vibrations have the same period, n = w and

E
2wk

sin tut.

Here the motion is a quarter of a period behind the force and the

amplitude becomes very great for small values of k.

If there is very little friction, we may put, neglecting higher powers,

,
. 2b>k

« = tan e = sm e = -5
n — w

and the equation of motion is

E ( . 2h \ .
xa = -7,— cos w (

t

—s
2 ) (22a).

u — \ n — to
2
/

v '

The friction now only affects the phase. For vanishing k, the

phase is in complete agreement with that of the force when n > o> and

in complete disagreement when n < o>.

As a suggestive example of motion due to periodic forces, we may
work out the case of one pendulum having mass m, and length l

,
sus-

pended from another pendulum of mass M and length L. For the

equations of motion of m
,
we have, neglecting friction and confining

ourselves to small motions,

+ j (#1
- cb)

= 0,

where xx and x are the displacements of m and M respectively.

If 27r/w! be the free period of m, when M is stationary, the equation

may be written

x
x + n x (xx - x) = 0 (23).

To form the equations of motion of M, we may take the tension of
.

the upper and lower strings to be (M+m)g and mg respectively.

Hence writing a for the ratio of the masses, and 2-rrjn for the free period

of M when the lower string is not attached, the equation of motion

becomes
x + »2

(1 + a) x + n x
a (x-Xi) = 0 (24).

We easily obtain a particular solution of these equations applying

to the case that both pendulums perform simple oscillations having

the same period. Writing for this purpose

x = a cos

xx = ra cos («£ — e)

We see at once by substitution in (23) and (24) that e = 0.

The same substitution then leads to

(25).

and

— a)
2 + n2

(l + a) + nx a (1 — r) = 0,

— ?-ft/ + nx (r— 1) = 0.
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Separating the unknown quantities r and w, we find

:

nS
r=

n? (O

and Tt
2 — u>

2 = a
n2

(»
2 + n 2

o>
2 - n2n 2

1

.(26).

7li to

There are two values of «2 which satisfy this equation and the most

general case of the motion of the combined pendulum is obtained by

superposing oscillations of both kinds. If a be small, the second of

equations (26) shows that a> is either nearly equal to n or to nv
We then find for <o

2 to the first order of magnitude in a, either

or

0)'

CO"

' = n2 fl + a J
1

2)\ n — n 2
/

\ n2 - nsj

Both equations show that the common period 2ir/<a is uot inter-

mediate between the two periods 2irjn and 2^/^ which the pendulums

possess separately by virtue of their length.

If we consider the effect of the lower pendulum simply as a

disturbance of that of the upper and heavier one,

the first equation may be supposed to hold and it

is seen that if the natural period of the upper

pendulum is greater than that of the lower, it is

made to go still more slowly by the attachment.

If a be small, r approaches in the two cases the

values n 2

/{n
2- n2

) and (n2 — n 2

) /an
2
. In the first

case there is agreement or disagreement of phase

according as the upper pendulum has the longer or
Eig. 170. shorter period. The reverse holds when the

combined oscillation has a period which lies near that of the lower one :

this case is illustrated in Fig. 170.

150. Passage of light through a responsive medium. We
now consider light to pass through a medium, the particles of which are

subject to forces, capable of giving rise to free vibrations of definite

periods. We consider plane waves propagated in the x direction, the

displacements being in the z direction. In order to obtain a simply

periodic motion for the free vibrations of the particles, we may imagine

each to be attracted to a fixed centre by a force varying as the distance.

This centre of force we take to form part of the medium to which it

is rigidly attached. If £ be the displacement of the medium, and 4
that of the particle, the equation of motion of the particle is

't + n2
(&-£) = 0 (27).

If pi is the mass of the particle, n‘px is the force of attraction at

unit distance from the centre of force. The reaction of that force has
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to be taken into account in forming the equations of motion of the

medium. At each centre, the medium is acted on by a force na

p1 (£x - £),

and if there are a great many particles within the distance of a wave-

length, we may average up the effects and imagine all the forces to

be uniformly distributed. Let p be the inertia of that portion of the

medium which contains on the average one and only one particle.

Then the equation for the propagation of the wave is :

C + = 0 (28),

where we' have written /3 = px/p and F stands for the velocity of

propagation when there are no particles or when n — 0.

If the wave is of the simple periodic type

£= cos {ax - o)t) (29)

and if the motion has continued without disturbance for a sufficiently

long time for the free vibrations of the particle to have died out, their

position is expressed by
£x = r cos {ax - (at) (30).

a; is a parameter which is constant for each particle, but varies

from particle to particle. By substituting (29) and (30) into (28)

and (27), two equations to determine a and r are obtained :

— o)V + ri
2
{r — 1) = 0,

— co
2 — fin

2
{r — 1) + FV = 0.

The first equation gives

(31),

and the second
V2a2

,
a"=l +

or — or
‘

wfa is the velocity {v) of transmission of the wave having a frequency

w/27t, so that finally

v2 F2

fin
2 \

The frequency of the free vibration is n/2-ir.

This is Sellmeyer’s equation, by means of which he first showed

that the velocity of light must depend on the periods of free vibration

of the molecules embedded in the aether.

151. General investigation of the effect of a responsive

medium. It will be useful to introduce here a more general investi-

gation, which we shall base on the electromagnetic theory.

In Art. 137 we had expressed the total current as the sum of a

polarization or displacement current and the conduction current. To
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this, we may now add the convection currents. If there are N positive

electrons in unit volume, each carrying a charge e and moving with

velocity £j in the z direction, then Neti is the z component of the

convection current, and to this we must add the convection current

of negative electricity - We may include both currents in the

expression Net, if £ denote the relative velocity of positive and nega-

tive electricity. The conduction current is also due to the convection

- of electrons, but we leave it in the form GE, because we want to

distinguish between the current subject to ohmic resistance which

forms a system depending only on one variable, and that which is due

to oscillations of electric charges within the molecule. Confining

therefore £ to the velocity -of these charges, we have for the z com-

ponent of the total current in place of (17) Chapter x.,

w =^K~+CE + Net (33).

The last of equations (12) Chapter x. gives with the help of (13)

and putting the magnetic permeability equal to one

:

4^ - A. (AAA dQ\ _ d (dP dR\
dt dy\dy dz) dw\dz ~dx)

d (dP dQ dB\ /OJ .

“**-s(3F + *+s) (34>-

The last term vanishes in isotropic media, and we may in that

case, eliminating w, write for the equation of motion in the z direction

+ ±*CR + 4irNefy = V
2# (35).

Always assuming the disturbance to be simply periodic, the dis-

placement £ may be divided into two portions, one of which is in phase

with R and the other in phase with dR/dt. Writing therefore

, j. i 73 R dR
4ir£ =AR r

r

<o at
(36),

and

(35) becomes

. l . dR
**c=A

Ht~

dR

B d2R
dt2

CD

^A~ + BioR (37),

rPJi flJi

(K+ NAe)
a~ + (4ttC+ wNBe)^ = v

2^-

Comparing this with (1), we see that the results of Art. 147 maybe
applied to this case, putting

G = K+NAe,
F= IttC + oiNBe.
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Hence by (13) v2 - k2 = (K+ NAe) V2
(38),

2vk cos p = (2(A + NBVe) V (39).

If the specific inductive capacity of the intermolecular space is the

same as that of empty space, KV2 = 1, and (38) is replaced by

v2 - k2 = 1 + NAeV2
(40).

152. Wave velocity in a responsive medium according to

the electromagnetic theory. P. Drude was the first to apply the

electromagnetic theory to the explanation of dispersion based on the

principles of sympathetic vibrations. It is now generally accepted

that each molecule contains a number of electrons, and that each

electron consists of a definite electric charge concentrated within a

space which must be small compared with the size of the molecule.

Every quantity of electricity is made up of these electrons just as any

ordinary substance is made up of atoms. It is therefore correct to

speak of an electron as an “ atom ” of electricity. A moving electron

represents kinetic energy which exists in the medium surrounding the

electron in virtue of the magnetic field established by the motion. This

energy is proportional to the square of the velocity, and may be ex-

pressed therefore in the form %pv2
if v be the velocity of the electron.

The quantity p we may call the apparent inertia of the electron. Students

must however guard against being misled into the error of believing

that if there are several electrons near each other, their total kinetic

energy may be written down as the sum of their separate kinetic energies.

That total energy contains products of the form vx v2 ,
where v2 and

refer to distinct electrons. While dealing with a single electron we are,

however, justified in applying to it the ordinary laws of dynamics

substituting p for its mass. If we therefore consider that the incident

vibrations of light excite the sympathetic motion of a single electron

in a molecule, we may write for the equation of motion

£ + n% —— = 0.

P

In forming this equation, we have imagined the electron to be acted

on by a centre of force varying as the distance, the force being n2
p at

unit distance, while e is the charge of the electron and R the external

electric force acting on it. If R varies as e™* and the free vibration

has died out, so that the period of £ is that of the incident force, we
may deduce

, eR

p (n2 — to
2)

'

By comparison with (36) we see that in the present case B = 0, and

47T0



151, 152] DISPERSION AND ABSORPTION 2G3

If the medium is a non-conductor, (39) shows that k = 0 and

v in that case is equal to the refractive index p. We therefore

finally obtain from (40)

2 ,
4treWV2

/<oN
P

3 = 1 + -7-a jr (42).
p(n2 -o)2

)

v ’

If the charge e is measured in the electrostatic system, we may
leave out the factor V2 in the second term of the right-hand side,

and the equation is then identical with that given by Drude*.

The dimensions of the equation are easily checked, as e
2
jp is of the

dimension of a length.

The manner in which the refractive index changes with a change in

the wave-length of the incident light, is easily recognized by inspection

of (42). For long waves, «> is small, and in the limit when co = 0 :

0 „ .
4trtfNV2

With increasing <*> the refractive index increases until n = <a.

At that point there is a discontinuity, p

?

suddenly changing from
+ 00 to — CO ,

For a definite value of u> larger than n, p is zero and afterwards p
increases once more and approaches unit value for infinitely short

periods. If we introduce K' the specific inductive capacity of the

medium which must coincide with the value of p
2
for w = 0 ,

we may
write

2
47Tg2iV

rF2M2

p
2=K+—r* iV-s (43).

p (n2 - w2

) n
2

Fig. 171 represents the curve y = ^
2 . By a change of scale, and a

A ‘ 00

displacement of the horizontal axis, the

curve may be made to coincide with that

4,
which gives the relation between p

2 and «.

In order to establish agreement with the

\ subsequent curves in which small values

V of «> are placed on the right, the positive

l i i ,
axis of x in the figure is drawn towards

*" 7 ° 1
the left.

V The above investigation gives the

essential features of the theory of dis-

_ persion in its simplest form, and may
be extended so as to approach more

_ nearly the actual conditions. Within each
' molecule there are a number of free periods

Fig. 171. of vibration as is shown by spectroscopic

* Lehrbuch der Optik
,
Chapter v.
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observation. It is necessary to consider therefore a connected system

of electrons, the state of motion for each free period being defined by

one variable. Assuming these periods to be independent of each other,

let fa, ip2 ,
etc. be the variables. For small changes 8^, 8

\f/2 , of these

variables, the total work done may be expressed in the form

&ityi + %&!'*+ ... =0.

If the displacements from the stable configuration are small, an

equation of /motion holds for each variable of the form

•Am "t" fl'm lAm )

where is the generalized component of force. The frequency of

the free period being nm/2ir, and the motion being assumed to be

proportional to eia>t, the equation may be written

If the external electric force is Rei<at
,
we have for the different

variables (w/W)^ =% = A
t
R,

(n2 - W2
)

lj/2 = ^2 =A 2R,

etc. where A x
and A 2 are constants. Linear relationships must hold

between the displacements &, £2 ,
etc. of the electrons and fi, fa,

so that for the total current within each molecule, we have

0(4+ £*2+ £s + •••) = 0(&l>Al + <*2*^2 + ...)

(LRj / Qj\A.\ d2A 2
e
~di

+ + (44).

Hence A in (37) becomes

A = Z
a A.

nm - (45 ).

au a2 , are a set of constants, the connexion between which and A 1} A a

etc. it is not necessary to discuss heref.

From the equation defining the electric current, we may, as in the

simple case which has been treated in detail, derive the expression

corresponding to (42) which now takes the form

/a
2 = 1 + ft

ni ~ «>
3 (46),

where ft, ft, etc. are numerical constants defining the dispersion of the

medium. For waves of infinitely long periods, we have

/
t
ao

9 = jr=l +^+^ +^ +
n? n2 «3

2 (47).

If there is only one period of vibration, ft may be determined from
the observed inductive capacity, and if K' is known, the refractive

index for all waves is completely determined.

* Lord Rayleigh, Theory of Sound
,
Vol. i Chapter iv.

t A general theory of optical dispersion was first given by Larrnor : Phil, Trans

.

cxc. p. 236 (1898).
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By using (47) equation (46) may be written, changing the constants,

M
!t=K'

+

(48),
im

where X is the wave-length in vacuo to which to applies, and XOT is the

wave-length, also measured in vacuo, which corresponds to the free

vibration of the molecules.

153. Dispersion in transparent media. If the range of

spectrum considered is far removed from any of the free periods of

the molecule, the dispersion formula may conveniently be expressed

differently. If the region of resonance lies in the ultra-violet, we may
expand in terms of a series proceeding by XOT/X and thus find

^ = JT + ^+^*+ (49),

where A x =tMm ;
A 2 = ;

Ap =2Mmhm2p ~2
.

Equation (49) is known by the name of Cauchy’s formula, but was

deduced by Cauchy in quite a different manner.

If the region of resonance is in the infra-red, we may express the

series in terms which proceed by and thus obtain
Am

if = IC-B0
- (£A2 + B2\

4 + . .
.
) (50),

where Bn = X B, = 2 Bn = 2

In the case of many substances Cauchy’s formula does not give

a sufficient representation of the actual dispersion without the addition

of a negative term proportional to X2
. This fact which has been clearly

established by Ketteler suggests that though the dispersion in the

visible part is mainly regulated by ultra-violet resonance, it is also

to some extent influenced by free periods lying in the infra-red.

Assuming for the sake of simplicity one infra-red and one ultra-violet

free period, having wave-lengths Xr and X„ respectively, equation (48)

becomes

[
A = K’ +

Mv

X2-X/
Mr

X,.
2 - X2 (51).

This equation has been tested over a long range of wave-lengths

for rock-salt, sylvin and fluorspar, and the agreement arrived at is

sufficient to show that in its essential points, the present theory is

correct, and that refraction is a consequence of the forced vibration

of the molecules, which respond strongly to the periodic impulses

of those waves which are in sympathy with its periods of free

vibration. These experiments, which are fundamental to the theory

S. 18
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of refraction, have been made possible by the beautiful device of

H. Rubens and E. F. Nichols*, which enabled them to obtain fairly

homogeneous radiations of large wave-lengths by multiple reflexion.

The success of the method itself is an excellent confirmation of the

above theory.

According to Sellmeyer’s equation, the refractive index is infinite

for periods equal to those of the free vibrations
;
light of such periods is

totally reflected. By successive reflexions from a number of surfaces, all

wave-lengths are eliminated except those for which there is approxi-

mately total reflexion. It was found in this manner that with

quartz, wave-lengths of 20'75 and 8'25 mikrons, and with fluorspar

a wave-length of 23 7, could be obtained.

The refractive index of quartz is represented with considerable

accuracy by the formula

JT’t ,

My Mr Mg
^ A2 -V Ar

2 — A2 A/^A2 ’

in which Ar and A„ are directly determined by observation.

Rubens and Nichols also determined the refractive indices of

rock-salt and sylvin for the wave-lengths 20'75/x and 8*8 5ju, and hence

could deduce an equation to represent the dispersion of these two

substances through a wide range. In the following Table, I have

collected the constants of the substances used by the authors, adding

Paschen’st numbers for fluorspar.

Table X.

Quartz Fluorspar Kock-salt

j

Sylvin

Mv •01065 •00612 •01850 •0150

Mr 44-224 5099 8977 10747

Mg 713-55 — — —
A® •1031 •09425 •127 •163

Ay 8-85 35-47 56-12 67-21

A«

K'
j

20-75

4-5788 6-0910 6-179 4-553

K 4-55 6-8 5-85 4-94

All wave-lengths are given in mikrons, i.e. in 10~4 cms. As
has been stated, the resonance periods of quartz have been derived

from observation, the others are calculated from the dispersion

* IVied. Ann. lx. p. 418 (1897).

t Wied. Ann. liii. p. 812.
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formula. A good confirmation was subsequently obtained by H. Rubens

and E. Aschkinass* in the direct determination of the resonance region

in rock-salt and sylvin, though the observed free periods were not

found to coincide as much as might have been wished with those

derived from the dispersion formula. The wave-lengths for total

reflexion were measured to be 51 '2 and 6 IT instead of 56 T and 67'2

as given in the table. There is still less agreement in the case of

fluorspar, the wave-length best fitting the observation being 35 ’47, while

the region of total reflexion lies at 23*7. The discrepancy may be

due to the fact that as in quartz, fluorspar has a second region of total

reflexion in the infra-red.

The next remark called for by the inspection of the table is

connected with the relative small values of the constants M in the

ultra-violet term. This must be due to the comparative smallness

of the resonance for short periods. There is a gradual increase of

the value of M for diminishing values of the resonance period. This

increase is not very uniform, but is such that in general it is more

rapid than the increase in the square of the wave-length at which

resonance takes place. A closer investigation of this point seems

called for, but it would be necessary for the purpose to take

account of the molecular volumes of the different substances. If

the refractive index for infinitely short waves is one, as required

by (46), equation (48) shows that the constants should satisfy the

condition

This relation is only approximately fulfilled by the numbers given

in the Table, but its complete verification was not to be expected

considering that there are probably unknown regions of resonance in

the ultra-violet.

The constant K' should, according to theory, be equal to the

specific inductive capacity of the medium
;
the last two rows of the

table show that though the present agreement is not by any means

perfect, its power to represent the facts is a considerable stage in

advance of the older theories which gave Cauchy’s formula. (Art. 139.)

154. Extension of the theory. Our theory requires extension

in two directions. Sellmeyer’s equation

/a
2 - 1 = 2V -

gives infinitely large values of fi whenever the period of the incident

* Wied. Ann. lxv. p. 241 (1898).

18—2
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light coincides with one of the free periods of vibration. This is

a consequence of the infinite amplitude of the forced vibration, as it

appears e.g. in equation (22a).

These infinite amplitudes may be avoided by the introduction of

a frictional term retarding the free vibrations as in the case treated in

Art. 147. Real friction is not admissible in the treatment of molecular

vibrations, but as there is loss of energy due to radiation, their must

be some retarding force, which is in phase with the velocity and which

recent researches have shown to depend on the third differential

coefficient of the displacement. Its effect will be the same as that of a

frictional force. Confining ourselves for simplicity to a single variable,

we may write for the displacement of the electrons in the molecule

according to (22)

j. Arsine . v

^
~ 2P<ok

cos (wt

where R — R^ cos o>t represents the electric force due to the incident

light and p has the same meaning as in Art. 152.

Introducing R in place of R0 the equation becomes

y _ e sin 2c „ _ e sin
2
e dR

^
4po>k 2poi2k dt

*

i . , . 2<ak
where by (21) tan e = .

Hence by comparison with (36)

rre sin 2e
A =

2ire tan e

pink

4tt0

pink 1 + tan2
e

n or

and B =

P Wfc2 + (n
2 - <n

2

)

2

27re sin
2
€ _ 2 ire tan2

e

pink p 1 + tan2
e.

(52),

27i-0 4*nk

Wk2 + (n
2 - to

2

)
2 •

Hence (39) and (40) become, taking account of (12), and putting 0=0

,

- «
0
2 = 1 + AirNe2 V'

2

v0k0 = 2irNe* V2

n — 0)“ '

p{Wk2+{n2 -okf\

2ink

p {4w
2^2 + (n

2- a,
2
)

2

} j

(53).

If k
0 be small, so that k

0
2 may be neglected, v0 becomes equal to the

refractive index of the substance, which then refracts according to the

sine law. The introduction of k has got rid of the infinite value of v0 ,

but the value of k will be shown in Chapter xiii. to be too small to be

the cause of the observed absorption phenomena.
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155. Finite range of Free Vibrations. Solids and liquids

exhibit absorption bands extending frequently with varying intensity

over a considerable range of the spectrum. In order to include this

case in our theory we may imagine that the free vibrations are not

confined to definite periods. The summation in (46) must then be

replaced by an integration, and we write therefore :

F
2 - 1

__
P* (3dn

~
Jn, »2 -w2

*

Here ft may be a function of n. Assuming it to be constant, we find

on integration

F 1=
|;

los
(n2 — «) {n i + to)

.(54),
(j?2 + to) («! - to)

where the absolute value of the fraction, the logarithm of which occurs

in the expression, is to be taken. The square of the refractive index

is infinitely large on the positive side for w = nly and infinitely large on

the negative side for w = n2 ,
n2 belonging to the higher frequency. The

region of <o for which p? is negative includes that range of waves which

cannot enter the medium. It is bounded on the red side by the value

of <d for which

(w — nx) (n2 + to) _ 2to

(/^2 — to) (nx + to) (3
*

and on the side of higher frequency by the value of w for which

W (^ + ft)
) = 2^

° {nx + w) (n 2 - w) [3
'

The infinity of the refractive index at the lower frequency edge

of the absorption is avoided if the intensity of the absorption band is

assumed to diminish gradually to zero on both sides instead of beginning

and ending abruptly. As a simple example we may take the case that

the absorption between nx and n2 is equal to fi(n — wx) (n2— n). The

expression for p? — 1 then becomes

» - 1 = r2 § (n ~ ni)(n2 ~ n)
Jnx

F
if — to

2
dn

<{* f {iii + w) (n2 + to) (n x - w) (n2— w)

2a> (

n

+ <«>)

n fK + to) (ll2 + to)

p
1 2w °

(wi - «)) (n 2 - w)

2oj (n — co)

n2 + to

nx + w

dn

2(o
log

n2 — to

«i — to

+ nx — n2
}

.(55).

In the second term the sign has to be chosen so as to give always
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a positive value to the fraction. At the edges of the band, we have

for w = :

/*
9 “ 1 =P {(»i + «a) log^f

2 ~
(w*

~
*0} t

for <0 = %:

H?
~ 1 = P |(«i + «a) log - (« 2-«0}

•

156 . Absorption. The gradual extinction of a wave of light as

it traverses a medium does not necessarily imply absorption in the

proper meaning of the term, which should only be applied when the

medium retains the energy which it has abstracted converting it into

heat or other forms of energy, such as chemical changes, that is to say,

when there is a degradation of energy. We have discussed the effects of

the free periods of the electrons which form part of the molecular

structure of the medium
;
the electric forces of the wave as it passes

produce steady oscillations of these electrons which in their turn affect

the wave, diminishing its amplitude and altering its velocity. But the

steady state is soon reached, and once established the electrons gain no

longer in energy, and what they take away from the wave they give up

to the medium as independently radiating centres. This, properly

speaking, is scattering. It would be wrong to describe a change of

refractive index as an effect of absorption : it is an effect of scattering.

True absorption is probably due partly to molecular encounters and

partly to molecular motion set up by pressure of light. One effect of

molecular encounters will be to restore the free vibration included in (20)

but left out of account in the subsequent treatment of the problem. If

the incident light extends over a finite range of the spectrum we must

multiply the first term of that equation by do> and integrate. Introducing

the value of e in the first term we obtain

:

Ad2

Z =
/

Edd) [(w
2 - to

2

)
2 + 4w2

p] cos (uit - e)

Jol

+ sin — 1?(t — ta).

The expression under summation indicates that at time ts the velocity

of the particle has altered by a quantity proportional to A s> the dis-

placement remaining continuous. The two terms, one which through

an integration represents the forced vibration due to light, and the

second by means of a summation the free vibrations provoked by

molecular shocks, have a form which in appearance is different. But

it can be shown that optically they are identical*, as may be proved

by expressing the free vibrations in terms of Fourier’s integral. Both

terms represent vibrations which are the more nearly homogeneous the

* Schuster, Proc . Roy . Soc. Yol. yiii. p. 248 (1920).
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smaller the value of k, and it has already been pointed out that as far

as its effects on the refraction of light is concerned k is negligible.

The gradual extinction of light passing through a medium in which

scattering preponderates follows a law different from the exponential

one which holds in the case of absorption
; the reason being that the

scattered light is itself thrown backwards and forwards by further scat-

tering. To take a simple case, we may imagine a thick layer of the

medium in which a general radiation equal in all directions falls on one

surface which we take to be in the plane of YZ. If we take A to be

the radiation which falls on a plane parallel to this surface at a distance

x from it, proceeding from the negative to the positive side, and 2* to

be the coefficient of scattering, then a layer of thickness dx will scatter

light of total amount 2sAdx, of which half is thrown forwards and

half backwards. Similarly, light of intensity B, which proceeds in the

negative direction, will lose by scattering an amount 2sBdx, which is

also divided into two equal halves. We therefore have:

dA
dx

dB
dx

from which it follows that:

d(A + B)

dx
2s(B-A);

i(A- B) _
dx "

The second equation shows that A — B is a constant for which we may
write B. At the surface from which the light ultimately emerges B-0,
and B denotes therefore the intensity of radiation which passes through

the layer. The first equation now gives

:

and hence

dA
= -sB,

dx

A =E— sBx,

where E is the radiation which enters. If the total thickness is t, A
must be equal to B for x - t. Hence B = Ej{ 1 + st) : and finally

:

A =E [1 + s (t — x)/(l + s£)]
;
B — Es (t— x)jl + st.

The equation for B shows that the total loss through scattering increases

at a much smaller rate with increasing thickness than in the case of

absorption. If the layer is sufficiently thick, so that st is large com-

pared with unity, the incident light is entirely thrown back, and the

scattering body acts as a total reflector. In that case

:

A—B — E{ 1 — xt).

The radiations in the two directions are therefore equal when x is small

compared with t, and the radiation is then everywhere equal to that

which entered the scattering body.
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157. Selective refraction. The phenomena which have called

forth the theoretical discussions of this Chapter have been grouped

together under the name “Anomalous Dispersion.” But we are now
prepared to say that there is nothing anomalous in the effect of

absorption on refraction, and that the ordinary or “ normal ” dispersion

is only a particular case of the “anomalous” one. Under these

circumstances the name is misleading, and I therefore introduce the

more appropriate one of “Selective Refraction” and “Selective Dis-

persion.”

The experimental illustration of selective refraction is rendered

somewhat difficult by the fact that the substances which show the

effects are all highly absorbent. With a hollow prism filled with a

strong solution of fuchsin or cyanin, it may easily be demonstrated

that the red of the spectrum is more refracted than the violet, but

dispersion in the immediate neighbourhood of the absorption band is

too great to make exact measurements in that region possible. Kundt
originated a method of observation which is often employed. The
vertical slit of a spectroscope is illuminated by projecting upon it the

image of a horizontal slit, through which white light is passed. If the

horizontal slit be narrow, an almost linear spectrum is seen, running

along a horizontal line. The position of this horizontal line may be

marked. If now a prism filled with a substance showing selective re-

fraction be interposed between the horizontal slit and its image, the

refracting edge of this prism being horizontal and downwards, the line

of the observed spectrum will no longer be straight. Were the prism

filled with water, the spectrum would run upwards in a curved line

from red to violet. A curve running downwards from red to violet

would indicate a refractive index diminishing with increasing frequen-

cies. Refractive indices smaller than one, showing a velocity of light

greater than that of empty space, would be indicated by displacement

below that of the original linear spectrum. For purposes of illustration,

and for measurements when the angle of the prism is small, this method

is very successful.

The simplest case of selective refraction is shown by sodium

vapour, as the absorption is here confined to two regions, each of

which covers only a very narrow range of wave-lengths. In other

words, the refraction is affected by absorption “lines” as distin-

guished from absorption bands. The selective refraction of a luminous

conical sodium flame was first shown by Kundt, who however did

not investigate the specially interesting region which lies between

the absorption lines. This has been done by Becquerel. Plate II.

Fig. 6 is a reproduction of one of Mr Becquerel’s photographs, the

red end being to the right. The sodium vapour was used in the form

of a luminous flame formed by a special device into a prismatic shape.
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The horizontal black line marks the horizontal linear spectrum in its

original position. The horizontal portion of the white band, the centre

of which is slightly raised above the black line, shows that at a short

distance from the double sodium line there is a slight displacement

upwards indicating a refractive index somewhat greater than one.

The nearly vertical branches of the curve indicate a considerable

dispersion close to and between the absorption lines. The course of

this dispersion is better studied in Fig. 172, which has been drawn

from the measurements given

by Mr Henri Becquerel*, up-

ward displacements being ap-

proximately proportional to

/*—1. It will be seen that in

accordance with the previous

theory, the refractive index

rapidly increases as we approach

each absorption line from the

red end, and that the light

which vibrates just a little more
quickly than that corresponding

to the absorption band has its

velocity increased. Mr Becque-

rel calculates approximately

that the light in close proximity

to Z>2 and on its violet side has

a refractive index of ’9988, so that its velocity is about ’1
°/o greater

than that in empty space. Concentrated solutions of colouring

matters exhibit the phenomena of selective refraction, but here the

theory is complicated by the fact that the absorption extends over a

wide range of wave-lengths. Some of these colouring matters may be

shaped into solid prisms of small angle, by means of which the refractive

indices for different periods and the coefficients of absorption may be

measured. Pflugert takes a few drops of a concentrated solution of

the colouring matters in alcohol, and runs the solution into the two

wedge-shaped spaces between a glass plate and a wide glass tube. As
the solvent evaporates, it leaves behind a double prism. Amongst
many prisms made in this fashion, a few may be found with surfaces

sufficiently good to render optical investigation of refractive indices

possible. The prisms used by Pfliiger had a refracting angle of from

dO—130 seconds of arc, and the refractive indices could be determined

throughout the absorption band. It is a special merit of Pfliiger’s

* Comptes Eendus cxxvm. p. 145 (1899).

t Wied. Ann . lvi. p. 412 (1895) and nxv. p. 173 (1898).
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investigations that he determined also the coefficients of absorption for

the different wave-lengths. As a thickness of very few wave-lengths

is sufficient to extinguish the light, the plates used for the purpose

had a thickness of less than half a wave-length. In Figure 173

Pfliiger’s curves for cyanin are reproduced, the curves of refractive

index and coefficient of extinction being marked B and A respectively.

The dotted line A' indicates an assumed absorption curve following

the law suggested in Art. 150, the constants being roughly adjusted so

as to fit the edges of the absorption band. A second dotted line

shows the curve of refraction (B’) calculated from equation (55) after

substitution of v
2— k2 for ju.

2
. The value of (3 was determined so as to

give roughly the proper quantity for the difference in the refractive

indices near the two edges of the absorption band, and a constant term

has been added to represent the effect of infra-red and ultra-violet

absorption. The correspondence between calculated and experimental

values might be made closer if instead of a constant term, one varying

with the wave-length had been taken, but in view of the fact that the

assumed law of absorption only approximately represents the facts, it

seems unnecessary to seek for a closer agreement of the refraction

curves. The more sudden fall and rise of the calculated dispersion

curve near the green boundary of the absorption band is due to the

fact that the actual absorption curve does not show the rapid increase

of absorption indicated by the assumed curve.

158. Metallic Reflexion. We include under the term “metallic”

reflexion, all cases in which the greater portion of the incident light

is returned, in consequence, as it will appear, of the absorptive power

of the medium If the amplitudes of the incident, reflected and
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refracted light be denoted by 1, r, s, respectively, we may as in

Art. 140 write

for the incident wave
e
{(ax+by-wt)

for the reflected wave

and for the disturbance entering the medium

§0 UdiX+by-ut)

(59)

,
(60)

.

The surface conditions are the same as for transparent media,

hence the previous investigations apply as far as the analytical

expressions of r and s are concerned. When the incident light is

polarized in the plane of incidence, the amplitude rs was found to be

sin (6l
— 0)

sin (#i + 0)
(
61 ),

and for light polarized perpendicularly to the plane of incidence

tan (&! — 0)
Vp

tan {91 + 6)
(62).

But being now complex, rs and rp are complex quantities from

which we may separately deduce the real amplitude and the change of

phase. Writing rg = hse
iS we see from (59) that hs is the real amplitude,

and S denotes the change of phase.

The problem now resolves itself into one of algebraic transformation

:

equations (61) and (62) must be put into the standard form he*5. If

we therefore confine ourselves to calculating the value of k for per-

pendicular incidence, and p 0 denote the refractive index of the first

medium we have as with transparent bodies :

rK = r„ =
/A + Mo‘

But from (16) fi = v0 + iKa ,

v<> + Mo + lKo
(63).

If this quantity be called P, and Q be that obtained from P by re-

versing the sign of i, the proposition proved in Art. 8 shows that

Hence P =

A’ = P<?; =
iJF^y

(vp - Mo)
2 + *0

*

. «_ 2 *o/*°

(v0 + p.,)
2 + X

,

’ " V0
2 + K0

2 - flQ
2 (64).

It will be noticed that great absorbing power means a large intensity

of reflectd light, for if k0 is large compared with v0 + 1 ,
h is nearly 1, and

the light is almost totally reflected. The absorbing power therefore is
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effective not only in transforming the energy that enters, but also in

preventing the light from entering. There is also nearly total reflexion

when v0 is either large or small compared with 1, but this effect is not

confined to opaque substances.

When the incidence is oblique, plane polarized light becomes

elliptically polarized by reflexion. To determine the constants of the

ellipticity, we take the incident beam to be polarized at an angle
<f> to

the plane of incidence, and consider separately light of amplitude cos
<f>

polarized in that plane and light of amplitude sin <j> polarized at right

angles to it.

We write Rs and Rp for the reflected complex amplitudes of the

components. These may be put equal to ra cos <£ and rp sin 4>, if the

amplitude of the incident light is unity. To separate the real and

complex parts we write hse
iSi and hpe

i&* for rs and rp respectively. We
have therefore

Ra = hs cos (f>
eiSi

,
Rp = hp sin

<f> e
l\

and writing tan
<f>
- hpjha,

= tan
<f>
tan i]/e

i(
-
s* ~ s>\

As and S2 measure, for the two components, the change of phase at

reflexion, the difference in the phase of vibration of the two components

after reflexion is equal to 8 = S2 — 81 . The ratio of the real amplitude

is found from the above to be tan <£ tan </\ If therefore we restore the

plane polarization of the reflected light by accelerating one of the

components or retarding the other, the plane of polarization will be

inclined to the plane of incidence at an angle x given by

tan x = tan
<f>
tan xp.

The quantities x and may be measured, and hence xp may be

found. We must now endeavour to express the optical constants

v0 and k0 in terms of 8 and xp. For this purpose, we have, from (61)

and (62),

cos (#! + 9) _ Tp _ hp/e
i5*

cos - 9) rs hgeiS x

= tan ipeis .

Also
cos (#! + O') _ cos cos 0 — sin sin 6 _ cot 9x - tan 0

cos($i — 9) cos cos 0 + sin 91 sin 9 cot^ + tan#*

Hence introducing (17)

,
... m — tan 9 sin 9 + ik

tan \pe
tS = — , . „—r-

m + tan 6*smS + ik
(65).

This expression is of the same form as (63), and by subjecting

it to the same transformation, we find

2
(m — tan 9 sin 9)

2 + k2

ten
(m + tan 9 sin 9)“+ k2 *
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Applying

this reduces to

Also

cos 2*]/ =
1 — tanV
1 + tan2^’

_ 2?n cos 9 sin2 6
COS

+ k2^ cog2 Q + gjn4 Q

2 k sin 0tan0
tan 8 =

.(66).

.(67).m2 + k2 - tan2 6 sin
2 d

If the optical constants k0 and v0 are known we may use equations

(12) and (18) to calculate v, k and m, and hence cos 2^ and tan 8 may

be found.

When the difference in phase, 8, is equal to a right angle, tan 8 is

infinitely large, and hence in that case

sin
2 6 tan2 6 =m2 + k2 .

The particular value of 0 defined by this equation is called the

principal angle of incidence, and corresponds to the polarizing angle in

transparent media.

The problem as it generally presents itself, consists in determining

the optical constants of the metal from observation of ^ and 8 ; for

this purpose (66) and (67) are not convenient, and we must transform

(65) in a different manner.

We easily deduce from that equation

m + %k _ 1 + tan ^elS

sin 0 tan 0 1 — tan t{/e
tS

_ 1 + tan if/ cos 8 + i tan if/ sin 8
~

1 - tan \]/ cos 8 - i tan $ sin 8
’

and if the right side of this equation is put into the normal form,

equating the real and imaginary terms gives :

m =
/

K =

sin 0 tan 6 cos 2i^

1 — sin 2 ij/ cos 8

sin 0 tan 6 sin 2^ sin 8

•(68 ),

.(69).
1 - sin 2^ cos 8

If instead of using a compensator similar to Babinet’s, the elliptic path

of the disturbance of the reflected ray is analysed by a quarter wave-

plate or Fresnel’s rhomb, the quantities measured are the ratio of the

axes of the ellipse and the inclination of these axes to the plane of

incidence. Calling tan the ratio of the minor to the major axis, and

y the angle between the major axis and the plane of incidence, we
obtain with the assistance of (17) (18) and (19) of Chapter i.,

sin 6 tan 0 cos 2# cos 2y
tn = .

-

1 - cos 2\& sm 2y

K —
sin 0 tan 6 sin 2\k

1 - cos 2\P sin 2y 1

.(70).
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Having obtained m and k we determine the optical constants v0 and

k0 in the following manner. Equations (12) may be written

m2 - k2 + sin
2 0 = v

0
2 - k

0\

rax. - v0k0 .

Solving these equations for v
0 and k

0 we obtain

2v0
2 = J(m2 - k2 + sin2 0)

2 + 4m2
/<
2 + (m2 — k2 + sin2 6

)

2«0
2 = sf(m2 — k2 + sin2 B)2 + 4m2

x.
2 - (rn

2 — k2 + sin2 B) 1
...(71).

Equations (68), (69) and (71) constitute the solution of our problem

in the form in which Ketteler * first gave it. This form is to be

preferred to the earlier one given by Cauchy, whose solution did not

directly lead to the separation of the constants v0 and k0 but only to

a set of equations which involved intermediate constants and variables,

having no physical meaning.

In the case of metals, m2 + k2 exceeds sin2 0 sufficiently to allow us

generally to neglect the square of sin2 Bj(m2 + *2). Under these circum-

stances, expressing the square root which occurs in equations (71) as a

series proceeding by powers of sin2
6, and neglecting all powers higher

than the first, we find

v0 = m(l

k0 = k(i -

sin
2 0 V

2 (m2 + k2)/

sin2 # \

2 (
m2 + k2))

(72),

showing that as a first approximation, and especially when the angle of

incidence is small, m and k may be taken to be equal to v
0 and k0 .

159. The Optical Constants of Metals. We owe to Drudet
the best determination of the optical constants of metals. After a

careful investigation of the effects of the condition of the surface and

the reflexion of surface films, results were obtained which are repro-

duced in Table XI. The measurements refer to sodium light.

I have added the third and fourth columns giving the values of

k2 — v
2 and vk cos p, the two invariants of metallic refraction. The

column headed 0P gives the angle of principal incidence ; the last

column, the calculated reflected intensity for normal incidence.

The table shows the remarkable fact that v
2—

k

2
is negative for all

metals. In the older theories of refraction in which the sympathetic

vibrations within the molecule were neglected, this appeared to be an
anomaly, but reference to equations (38) and (39) shows that A is

negative when « > n and that v2 - k2 may therefore also have a negative

value.

* Opiik p. 187 and Wied. Ann. vn. p. 119 (1879).

t Wied. Ann. xxxix. p. 481.
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Table XI.

*0 "0 /C
2 -»/2 VK COS p Op ti

*

Bismuth 3-66 1-90 9-79 6-955 77° 3' •652

Lead 3-48 2-01 8-07 6-995 76° 42
'

•621

Mercury 4-96 1-73 21-61 8-580 79° 34
'

•784

Platinum 4-26 2-06 13-90 8-776 78° 30' •701

Gold 2-82 0-37 7-81 1-043 72° 18
' •851

Antimony 4-94 3-04 15-16 1502 80° 26' •701

Tin 5*25 1*48 25-37 7-771 79° 57
' •825

Cadmium 5-01 1-13 23-82 5-661 79° 22' •847

Silver 367 0T8 13-44 •6607 75° 42
' •953

Zinc 6-48 2-12 25-54 11-62 80° 35
'

•786

Copper 2-62 0-64 6-45 1-677 71 ° 35
'

•732

Nickel 3-32 1*79 7-82 5943 76° r •620

Cobalt 4-03 2-12 11-75 8-543 78° 5
' •675

Steel 3-40 2-41 5-75 8-194 77° 3' •585

Aluminium 5-23 1-44 25-28 7-531 79° 55'
•827

Magnesium 4-42 0-37 19-40 1-635 77 ° 57
' •929

Table XII.

Wave-lengths in

tenth-metres

A. Pure Metals

Platinum

Gold

Silver

Copper

Nickel

Steel (hard)

Steel (soft)

B. Speculum, Metals

Alloy of Brashear.

68-2%Cu+31-8Sn
Alloy ofBrandes and
Schunemann.
41 % Cu + 26 Ni+
24 Sn+ 8 Fe+ 1 Sb

Alloy of L. Mach.

66§% A1+33J Mg

C. Glass Plates cover-

ed at the back with

Silver

Mercury

4500 5000 5500

0 /
/o % %

55-8 58-4 61-1

36-8 47-3 74-7

90-6 91-8 92-5

48-8 53-3 59-5

58-5 60-8 62-6

58-6 59-6 59-4

66-3 55-2 65-1

61-9 633 64-0

49-1 49-3 48-3

83-4 83-3 82-7

79-3 81-5 82-5

85-7 86-6 88-2

72-8 709 712

6000 6500 7000

% % %
64-2 66-3 70-1

85-6 88-2 92-3

93-0 93-6 94-6

83-5 89-0 90-7

64-9 65-9 69-8

600 60-1 60-7

56-0 56-9 59-3

64-4 65-4 68-5

47-5 49-7 54-9

830 82T 83-3

82-5 83-5 84-5

88-1 89T 89-6

69-9 71-5 72-8
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The question of metallic reflexion deserves further experimental

treatment. Thus the observation made by Lord Rayleigh* that if a

glass surface be silvered it only reflects about 83% of the light from

the glass side while it reflects over 90% from the air side is not

accounted for by the equations we have deduced.

The somewhat important question relating to the amount of light

reflected at normal incidence has been investigated directly by E. Hagen
and H. Rubens t. Some of their results are embodied in Table XII.

A comparison with Drude’s numbers shows generally a good agree-

ment. The alloy of Brandes and Schiinemann is of practical importance

owing to its permanence and resistance to deterioration when exposed

to moist or impure air. Drude has also determined v0 for red light

and found that most metals refract the red more than the yellow. The
coefhcient of extinction was determined directly by Rathenau f.

Equation (39) disregarding B reduces to

V(,k0 = (7FX

This is found to give voo large a value for the coefficient of extinction

in metals as already noticed by Maxwell. The disagreement is not

entirely removed by irtroducing the term B and the theory must be

recast altogether. Drude was the first to show that if conduction in

metals is due to the convection of electrons the additional inertia term

is sufficient to account for the partial transparency of highly conducting

substances.

In the older form of the theory of conduction the total energy of

the magnetic field was calculated on the assumption of a uniform

distribution within each element of the conductor. But if instead of

an evenly distributed electric fluid, we imagine electricity to be concen-

trated within the electron, the magnetic field in the immediate neigh-

bourhood of that electron will be very much larger than the average

energy in each element of volume. Hence the inertia, or the coefficient

of self-induction, by whichever name the factor in question may be

called, is underrated in the ordinary treatment. It may be shown

that the difference affects only cases in which there is—as in the

phenomena of light—a rapid variation of current. The error committed

depends on the nearness of the moving electrons, and on their linear

dimensions, but if their distance apart is great compared with their

diameter, the additional energy per unit volume is J<n
2 where i is the

current density and o- stands for p/iVe
2
§, JVbeing the number of moving

electrons per unit volume, and p the apparent mass. If each molecule

* Collected Works
,
vol. n. p. 538. + Drude’s Aimalen

,
vol. i. p. 352.

I Quoted in Winkelmann, Encyclopedia der Wissenschaften,
vol. u. p. 838.

§ A. Schuster, PhiL Mag . vol. i. p. 227 (1901).
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supplies one electron, which carries the conduction current, o- is of the

order of magnitude 5 x 10-11 and has the dimensions of a surface.

di
The effect of the inertia is the same as that of an electric force <r

dt

opposing the current. If G be the conductivity this electric force pro-

di
duces a current density where i only relates to the conduction

current.

The equation of electric current (33) now becomes, if we denote

by w' the z component of the conduction current,

w + Co-
dw' _ K_ dR
dt 4Jr dt

+ CR + .ZVb£,

also
, K dR ,T i

w = w — jt — JSeC.
Air dt

d
Hence if D stands as a symbol for

^

or with the help of (34), omitting the last term on the right-hand side

of that equation,

Differentiating with respect to the time and applying (34) again,

we find

D |4ttCR + (1 + crCD) (k~ + AirFety = (1 + <rOD) V*R (73).

If the motion is periodic and contains e~ ia>t as factor, we may sub-

stitute —i<o for D, and for £ we may use its equivalent (37) in terms of

R. The equation then becomes

V2
22 = - (Ew2 + iF<a) R (74),

47raC2

where E=K+ NeA -

F= NeBw +

l + o‘
2CW’

AttC

Hence from (13)

v0
2-k0

2 = V*(K+NAe-

(1 + <r
2C7V)*

AiroC2

1 + c

r

2(?V
2Cr

>)1

2vqK°
= V‘2

\
NBe +

i + a2C2^,

where in the last term, t is written for 2-irfw.

s.

)

.(75),

19
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The effect of o- is therefore to diminish the product v0k0 and hence

to diminish that part of the absorption which depends on conductivity.

Equations (75) are, allowing for a change of notation, identical with

those obtained by Drude. If we disregard A and B, we obtain

v0
a— k<? = 1

4inrCPV*

l+<r8CV
orx

Vo*° -
l +<rW

(76).

If the numerical values of C and « are introduced and the quantity

o- is estimated, it is found that crC<a is large, and equations (75)

become with sufficient accuracy

k
o
2 = 1

4ttV2 „ A
j- +NA V\

(TO)

;ardin,

As B is always po;~ it follows that

VX
v°Ko> OJ&-

This relation allows us to calculate an upper limit for the number
of electrons which take part in conduction currents, and it is found

that this number in the different metals is of the same order of

magnitude as the number of molecules*.

160. Reflecting powers of metals for waves of low fre-

quency. Maxwell’s theory has received an important confirmation in

the work recently published by Hagen and Rubens t, on the relation

between the optical and electrical qualities of metals. These investi-

gations relate to waves of low frequency.

Neglecting <r, we may write equations (76)

r
0
2 ~ Ko

= 1,
'

v0 xa = CVX.

As X is supposed to be large, both v and k must be large and nearly

equal. The second equation gives, neglecting the difference between

the two quantities,

k
0 = JGVX.

To test this formula for long waves, Hagen and Rubens measure the

reflecting powers at normal incidence. For the intensity of the
reflected light, we have obtained the expression (64), wliich by
substitution becomes (k0 - 1)/(*0 + 1) for large values of k0.

* Schuster, Phil. Mag., Vol. vn. p. 151 (1904).

t Ann. d. Physik, Vol. xi. p. 873 (1903) and Phil. Mag. Yol. vjgc,,

p. 157 (1904).
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Writing B' for the reflecting powers of a metal in per cent.,

100 —B' gives the intensity of the light which enters the metal, the

intensity of incident light being 100, and the formula to be verified

becomes

where r is the period.

100-i2' =
200

Table XIII.

1 2 3 4 5 6

Metals
(100 -R') f<3r A= 12 /x Conduc-

tivity

at 170°

(100 -IT) for X
A

= 25-5/t&170°

Observed Computed
Z'

Observed Computed

Silver 1-15 1-3 392 1-13 1-15

Copper 1-6 1-4 32-5 1-17 1-27

Gold 2*1 1-6 27-2 1-56 1-39

Aluminium 20-4 1-97 1-60

Zinc 10-2 2-27 2-27

Cadmium 8-40 2-55 2-53

Platinum 35 3-5 5-98 2-82 296
Nickel 4-1 36 5-26 3-20 3-16

Tin 5-01 3-27 3-23

Steel 4-9 4-7 330 3-66 3-99

Mercury 0-916+ 7-66 7-55

Bismuth 17-8 11-5 0-513 25-6 1009

Rotguss* 7-05 2-70 2-73

Manganin 2-37 4-63 4-69

Constantin 6-0 7-4 2-Q4 5-20 5-05

Patent Nickel P. 5-7 5-4 3-69 4-05 3-77

Patent Nickel M. 7-0 6-2 2-86 4-45 4-2S

Rosse’s Alloy 7T 73
Brandes and \

Schunemann’s
f

91 8-6,

Alloy J

In Table XIII., columns 2, 3, the observed and computed values of

100 — B' are tabulated for A. = 12//. (// = 10
_4

cms.). For larger values

of \ B' approaches 100% asymptotically with increasing wave-lengths,

and the difficulty of experimentally determining 100 — B! increases ac-

cordingly. Hagen and Rubens therefore measured the emissive power

instead of the reflecting power of the metals.

* “ Rotguss” contains 85-7 Cu + 7 2 Zn + 6'4 Sn.

f At 100°.

19—2
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From a comparison of the radiation sent out by a metal with that

sent out by a black body, the reflecting power may be directly deduced.

In Table XIII., column 4 gives the conductivity at 170° C. calculated

from the known conductivities at 18° and the temperature coefficient.

Columns 5 and 6 give the observed and computed emissive powers at

170°. It will be noticed that the agreement is excellent in all cases

except Aluminium which shows a considerable deviation, and Bismuth

which forms a complete exception to the law.

Professors Hagen and Rubens have also directly verified the fact

that the quantity 100 — JR' indicates with increasing temperature a

change corresponding to the change of electrical resistance, and they

further point out the remarkable fact that it would be possible to

undertake absolute determinations of electrical resistance solely by the

aid of measurements on radiation. The agreement of Maxwell’s

theory in its simple original form with the result of the experiments

just described, proves that for wave-lengths as great as 12/a, the

free periods of vibration of the molecules do not affect the optical

constants of metals.

161. Connexion between refractive index and density. All

investigations discussed in this Chapter which base the optical pro-

perties of a medium solely on the responsive vibrations of the atoms

and molecules appear to lead to the conclusion that /a
2 - 1 is proportional

to the density. Changes of temperature and pressure should only

affect the refractive index in so far as the density is changed. Experi-

ments do not confirm this conclusion except in the case of gases. A
good example of the failure of the formula is furnished by water near

the freezing point. The variations in density, which have a well-

defined maximum at 4° C., have no counterpart in corresponding

changes of the refractive index. We must conclude that the theory is

incomplete and leaves essential factors out of account. If we examine

the assumptions tacitly made, we can discover at any rate two which

may contribute to the discord between theory and experiment. We
have assumed in the first place that the free vibrations of the electrons

within the molecule are unaffected by changes of temperature and

pressure. It is likely, on the contrary, that any changes in chemical

constitution or of molecular grouping materially affect the result. An
even more important cause of the discordance lies in the assumption

that the molecules act independently of each other. If—as in the case

of solids—they are more or less regularly spaced, the formulae need

correction. Two authors of similar name, H. A. Lorentz* of Leyden,

and L. Lorenz f of Kopenhagen, have almost simultaneously published

* Wied. Ann. ix. p. 641. (1880.)

f Wied. Ann. xi. p. 70. (1880.)
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investigations which take account of the mutual effects of the mole-

cules and lead to the conclusion that it is (/x
2 -

1 ) /
(/x

2 + 2)D which is

constant. (

D

denotes the density.) The formula has been confirmed

in many cases by experiment. It is remarkable that the formula of

Lorentz and Lorenz correctly gives for a number of substances the

alteration of the refractive index during the change from the liquid to

the gaseous state. The effect of regular molecular spacing on physical

properties has also been investigated by the late Lord Rayleigh*.

An attempt has been made by Gladstone and Dale to connect the

refractive indices of a compound with that of the elements composing

it. They concluded that if any compound of molecular weight u> and

density D contains n2 ... atoms of various kinds, the refractive index

of the compound could be calculated approximately from the formula

(/X — 1) CO
-

—

jy
- =n1 v1 + n2v2 + n3v3

when v1 ,
v.2) v3 are constant for each element.

162. Historical. Augustin Louis Cauchy, whose work has already

been referred to at the end of Chapter x., published some important

researches in wave propagation and first obtained formulae giving the

constants of elliptic polarization of light on reflexion from metallic

surfaces. These he published however without proof.

Jules Cdffistin Jamin (born May 30, 1818, in the Department of

the Ardennes, died February 12, 1886, at Paris) was the pioneer in

the experimental investigation of metallic reflexion, and showed that

Cauchy’s equations represented the facts with sufficient accuracy.

Eisenlohr supplied the analytical proof of Cauchy’s formulae and

showed that the proper interpretation of Jamin’s measurements leads

to the conclusion that for silver the refractive index is smaller than one.

This result, which did not seem at that time to be reconcilable with

the stability of the medium inside the metal, received support from

Quincke’s experiments which proved an acceleration of phase when

light passed through thin metallic films. The matter was finally

settled by A. Kundtt (born Nov. 18, 1839 at Schwerin, died May 21,

1894 near Liibeck, Professor of Physics in the University of Berlin)

who succeeded in making thin prisms of metals and thus could demon-

strate directly that in metals light was propagated more quickly than

in vacuo. The apparent anomaly of this result received its explana-

tion when the refraction of absorbing media generally was more

carefuPy studied.

In 1862 Le Roux having filled a hollow prism with the vapour of

iodine, noticed that while it absorbed the central parts of the spectrum,

* Collected Works, Yol. iv. p. 19.

f Wied. Ann. xxxiv. p. 469. (1888.)
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it transmitted the red and violet ends, refracting however the red end

more than the violet. This phenomenon he called anomalous dispersion.

Eight years later, Christiansen noticed the same phenomenon in the

case of a solution of fuchski. The matter then attracted considerable

attention, and A. Kundt especially improved the experimental methods.

Including a great many colouring matters in his investigations he was

able to formulate the general laws which regulate the influence of

absorption on refraction. In the meantime, Sellmeyer had published

his theoretical investigation, which is now generally recognized to be

correct in principle. It only remains to allude to the work of Ketteler,

who more than any one else has shown, both by experiment and by
mathematical calculation, that all refraction is of one kind, and that

even in the case of apparently transparent media like water, it is

necessary to take account of the effects of the free vibrations of the

molecules both in the infra-red and ultra-violet.

The recent development of the subject has already been sufficiently

treated.



CHAPTER XII.

EOTATOEY EFFECTS.

163. Photo-gyration. In all cases hitherto considered the

transmission of a luminous disturbance has been such that a plane

polarized wave was propagated with its plane of polarization remaining

parallel to itself. But there are media in which the wave, though

remaining plane polarized, shows a continuous rotation of the plane

of polarization as it proceeds. If plane polarized light be made to

traverse, for instance, a tube filled with a sugar solution, and the

emergent light be examined, it is observed that the plane of polar-

ization has been turned through an angle which depends on the

concentration of the solution and is proportional to the length of

the tube.

The direction of rotation may be right-handed or left-handed.

It is said to be right-handed when it is in the direction of the rotation

of the hands of a watch, looked at from the side towards which the

light travels.

Substances which possess this property are often called “optically

active,” an expression which is not very descriptive and possibly

misleading, as the word “ activity ” has been applied to several

different properties. We shall find that the distinctive feature of the

rotational property is the different velocity of propagation of circularly

polarized light according as it is right-handed or left-handed. We may
therefore appropriately call substances “dextrogyric” or “laevogyric”

according as they turn the plane of polarization to the right or to the

left (yv/ao?, a circle). A substance is simply called “photogyric” if it

acts in its isotropic state, but “crystallogyric” if, like quartz, the

property is connected with its crystalline nature. Finally all sub-

stances turn the plane of polarization when they are traversed by

light in the direction of a magnetic field. They become therefore

“magneto-gyric.” If a special word be required to express the

general property not applied to any particular case, we shall use

the expression “allogyric” (aAAos, different), while substances which

are inactive are “isogyric.”
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The allogyric property implies some asymmetrical structure, and

in the case of solutions, the want of symmetry must be in the structure

of the molecule itself. Van ’t Hoff and le Bel have indeed drawn

important conclusions as to the arrangement of the atoms in the

molecule of allogyric substances.

Quartz is the most conspicuous example of a crystallogyric body.

If a plate a few millimetres thick be cut out of a crystal of quartz

perpendicularly to the axis, and this plate be inserted between crossed

Nicols, the luminosity of the field is seen to be restored. If the

original light was white, the transmitted light is coloured. The
explanation of the effect presents no difficulty on the assumption of

a rotation of a plane of polarization which is different for different

wave-lengths. There is no rotation of the plane of polarization if the

wave-front is parallel to the axis. Some specimens of quartz show a

right-handed rotatory effect while others are left-handed. It is found

that generally the direction of the rotation may be detected by a close

examination of the crystal, there being certain small asymmetrical

planes at the corners between the hexagonal prism and pyramid,

the position of which is different for the two types of crystals. In all

substances hitherto discovered, which are allogyric, the angle of

rotation, per unit length of substance traversed, increases with the

refrangibility and is approximately proportional to the inverse square

of the wave-length.

There is a marked distinction between the magnetogyric and other

allogyric effects. In the case of substances which possess the rotatory

property in their natural state, the rotation for rays travelling opposite

ways is in the same direction when looked at from the same position

relative to the direction in which the light travels. Thus if A and B
are two ends of a tube containing a solution of sugar and light is sent

through the tube from A to B, an observer looking at B towards the

light will observe a right-handed rotation. If now the light be sent

from B to A and the observer looks at A, the rotation observed by him

is still right-handed. If there were a mirror at B, and the ray after

traversing the tube from A to B were reflected back towards A, the

plane of polarization at emergence would be parallel to the direction

it had on first entering the tube at A. This we should indeed expect

by the principle of reversibility (Art. 25). In the case of magneto-

gyration on the contrary the direction of rotation is different as seen

by the observer according as the light travels with or against a line of

force, but it is the same when looked at from the same position relative

to the direction of the magnetic field. Consequently if light travels from

A to B, and is reflected back at B, the angle through which the plane

of polarization is rotated is increased and hnally doubled during the
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passage backwards. The principle of reversibility holds in this case

also, but we must reverse the direction of the magnetic field as well

as the direction of the ray.

164. Analytical representation of the rotation of the plane

of polarization. Consider plane waves travelling in the direction of

x, with a uniformly rotating direction of vibration. As each wave-

front reaches a given position, the direction of vibration is a definite

one, and the angle which that direction forms with one fixed in space

is therefore a function of x only. If it be a linear function of x, the

plane of polarization rotates through an angle which is proportional to

the distance traversed. Let 17 and £ be the projections of the dis-

placement, and put

77 = 2 cos rx cos (lx— otf)

£= 2 sin rx cos (lx— <*>t)

The equations satisfy the condition laid down for the direction of

vibration, for if 8 be the angle between it and the axis of z

tan 8 = ^
= tan rx,

from which it follows that 8 is a linear function of x, and that r

measures the angle of rotation per unit length of path. We call the

quantity r the “gyric coefficient.” Equations (1) also satisfy the

conditions of ordinary wave propagation, as the displacements may be

expressed as a sum of terms, each of which has the form f(x— vt).

To show this we need only transform the products of the circular

functions in a well-known manner.

Writing
J71 = COS (liX—<i>t)\ %= cos (l2x — a>t)

£x = sin (lxx-wt); £2 = - sin (l2x - ui)

we find that (1) becomes identical with

y = Vi + y2 ; £ = £i + £a ,

provided that

r = i (4
~
4) > l— 2 (4 + 4)>

or if r and l be given

lx = l + r
;

l^l-r.

The disturbance is now expressed in terms of four parts, each of

which is of the homogeneous type, but while the periodic time for each

of these four waves is the same, the wave-lengths are in groups of

two: 277-/4 and 2irjl2 respectively. The displacements ^ and £j form

together a right-handed circularly polarized ray, propagated with

velocity vr = w/(l + r), while the displacements ya and £2 combine to
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form a left-handed circularly polarized ray propagated with velocity

Vi= o>/(7 — r). The gyric coefficient may be deduced from vr and vt

by means of

(3).
2 \vr Vi)

K '

The important conclusion that a wave travelling with a uniform

rotation of its planes of polarization is equivalent analytically to the

superposition of two circularly polarized rays of opposite directions and

propagated with different velocities is due to Fresnel. A simple

geometrical illustration may be given. If two points P and Q are

imagined to revolve in opposite directions with uniform and identical

velocities round the circumference of a circle (Fig. 174), they will cross

at two opposite ends A and B of a diameter, and
p4 n their combined motion is equivalent to a simple

7\ 'Va, periodic motion along AB as diameter. The two

/ points may be considered to represent the dis-

l
0

J
placements of two waves polarized circularly in

b}\ J opposite directions, having for their resultant a

' plane polarized wave. If the two circularly polar-

F j ir> 174>
ized waves are transmitted with different velocities,

there is, as the waves proceed, a gradual retarda-

tion of one circular motion relative to the other, so that the crossing

points gradually shift to one side or the other. The combined motion

always remains a simple periodic motion along a diameter, but that

diameter rotates uniformly as we proceed along the wave normal. If

A z ,
Bi are the crossing points in a wave-front which is at unit

distance from that originally considered, AOA
x
represents the angle

through which the plane of polarization is turned in unit length

of path.

165. Isotropic substances. There is no satisfactory repre-

sentation of the mechanism by means of which an asymmetrical

molecular structure turns the plane of polarization, but we may easily

extend our former equation so as to include rotatory effects. In

the equation (Art. 152, Chapter xi.):

i+n% =—
(4),

it was assumed that the electron suffers no constraint in its motion

;

but if forces act which depend on the displacements of other

electrons, the resultant force may involve not only the three com-

ponents P, Q, B of electric force, but also their nine differential

coefficients with respect to the three independent space variables.

Considering small motions only, we need only take linear terms into
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account. The complicated general equation which would result from
the substitution on the right-hand side of (4) of twelve linear terms is

much simplified by the restriction of our investigation to isotropic

substances.

In such substances a luminous wave is affected equally in what-

ever direction it passes, and the resultant differential equation must

therefore be independent of the direction of the coordinate axes. If

for instance we turn the system of axes through 180° round the axis of

z, the simultaneous reversal of the signs of ft, Q, x and y must leave

the equations unaltered. This consideration shows that there are no

terms involving Q, R, ^ ^ and^ because all these terms if

existing would reverse their sign by the supposed change in the

coordinate axes. Similarly if we rotate the axes through 180° round

the axis of x, the left-hand side of (4) changes sign, hence the general

term to be substituted on the right must also reverse its sign. This

excludes the terms depending on^ ^ ^

.

The only remaining

differential coefficients are^ and ^ , and these must occur in the
ay ax

i • > • Sift SQ. i i • . i , ,i iSJP SO
combination , as may be seen by turning the system through

90° round the axis of z and introducing the condition that the equation

remains unaltered. We may therefore write the resulting differential

equation

:

»
Similarly i) + nr\ — -

P

e Vn (dR dP\~]=
pLe+s U“3F)J

Confining ourselves to insulators, equation (35) of Chapter xi. is

2T^==v2P-4WW£ (7).

If the displacements are proportional to so that in (5) we may

write - £/<t>
2
for £, we obtain by substitution in (7)

Similarly

/72 7? rKy^ = v2ft-^m R + s
St2 L

where

= v2
Q - <*>*»* [<? + s

(

47ri\Vm
~p(y-rP)'

dft dft

dx dz

,
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If we consider plane waves parallel to yz so that the electric forces

are independent of y and z, equations (8) may be written

•(9),

dx2

where Mx = to
2 (K +- m), M2 = w2

ms.

From equations (9) we derive

:

(« + ifi) — [v, - (Q + *72) (10).

This has for a particular solution

Q + ifi = ei (l ‘
x -°> ty (11),

provided that

ll
*=Ml +MJ1 (12).

Reversing the sign of i in (10) and assuming a solution

= (13),

we find the equation of condition

l
2 =M1 -M,l2 (14).

The positive roots of (12) and (14) which alone need be considered

are

2/x = M 2 + 4d/i
^

24 =-M2 + j

.(15).

Separating and retaining only the real parts in the solutions (11)

and (13), it is seen by comparison with (2) that (11) represents a

right-handed circular polarization, while (12) represents a left-handed

circular polarization. The two waves are propagated with velocities

w/4 and <«>/4 respectively. The superposition of both solutions

represents a plane polarized wave, the plane of polarization rotating

per unit length of optical path through an angle r which is obtained

from (3)

:

r=l{k-k) = \M3

2irNei
s co

2

p nr' — n2 (16).

The above investigation shows that the only terms depending on

the first differential coefficients of the electric forces which can be

added to the general equations of light and are consistent with isotropy

indicate a turn of the plane of polarization. This does not of course

furnish an explanation of the rotatory effect, which would require

a knowledge of the physical cause to which the terms are due. We
may however take one step forward towards an explanation by
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considering that the terms in equation (5) which have been added

represent a torsional electric force having the axis of £ as axis. The

equations mean therefore that a displacement of the electron in the

z direction may be produced not only by a force acting in that

direction, but also by a couple acting round it. A rifle bullet lying in

its rifle barrel would be displaced in a similar manner along the barrel

both by a pulling and twisting force. But if we take the dimensions

of a single electron to be very small, we exclude the possibility of

a constraint which would enable a couple to cause a motion in one

direction. We must in that case draw the conclusion that the

vibrations of the electron which give rise to the rotatory effect are

motions of systems of electrons united together by certain forces which

are such that a couple of electric forces produces a displacement of the

positive electrons in one direction or of the negative electrons in the

opposite direction along the axis of the couple. In view of the fact

that a single electron cannot be acted on by a torsional force, it would

have been more appropriate to base our investigation on equation (44)

Chapter xi. The generalized force 4q would in the present problem

dP
dy

the second part of Art. 152 is modified by the addition of appropriate

terms, the result arrived at would, for a single variable, remain the

same as that represented by (16).

166. Allogyrie double refraction. Equations (2) show that

the analytical representation of plane polarized waves travelling

through an optically active medium necessarily involves two different

wave velocities. In any question concerning the refraction and
reflexion of light, we may take all four displacements represented by

(2) separately and apply the formula obtained for homogeneous dis-

turbances. It is clear that the wave on emergence must be split into

two separate waves which are circularly polarized in opposite directions

This double refraction, due to the rotational effect, is verified by
experiment and has some practical importance. Quartz, as has

already been mentioned, turns the plane of polarization of waves

travelling parallel to the optic axis, and in consequence, a ray

travelling along the optic axis is doubly refracted at emergence.

Quartz is very useful in optical investigations on account of its

transparence to ultra-violet rays, and it is a serious drawback that it is

impossible to avoid double refraction in a prism made of that substance.

The difficulty is overcome by combining two prisms made of two

specimens, one of which has a right-handed and the other a left-

handed rotatory power These two prisms ABC and A 1BC (Fig. 175)
are right-angled at C and have their optic axes parallel to AAi, They

depend not only on JR but on ( -Q
) , and if the investigation in
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are joined together along BO, and if a ray traverses such a prism at

minimum deviation its direction inside the prism

is parallel to the axis. A ray polarized either in

the principal plane or at right angles to it, is

divided into two rays circularly polarized in oppo-

site directions. The same is true therefore of an

unpolarized ray. Of these circularly polarized

rays one gains over the other while traversing the

first prism, and loses equally while passing through

the second prism. The combined optical distance

is therefore the same for both components, and

there is only a single refraction at emergence.

Fig. 175.

167 . Crystalline media. A plane wave travelling through

quartz splits up into two plane polarized waves if the wave travels

at right angles to the axis, and into two circularly polarized waves

if it travels parallel to the axis. In the case of waves travelling

obliquely to the axis we may therefore surmise that the two waves

are elliptically polarized, the ellipse becoming more and more eccentric

as the wave becomes less inclined to the axis. This conclusion is

verified by experiment. The elements of the ellipse have been made
the subject of calculation by Sir George Airy*. A very clear account

of this subject is given by Mascartf. It was believed for some time

that crystallogyric properties were confined to uniaxal crystals, but

Pocklingtonif observed effects in the case of cane sugar. Subsequently

Dufet§ found other biaxal crystals showing a turn of the plane of

polarization depending on the orientation of the crystals.

168 . Rotatory dispersion. The rotation per unit length

according to (16) is

(SO*

on the supposition that we need only consider one period 2-n-fn of the

free vibration. In this expression /3 is a constant which may either be

positive or negative according to the sign of s. If the free period is

very short compared with the range of visible periods, we may neglect

<o in comparison with n, and the rotation is in that case proportional

to <*>
2
, i.e. inversely proportional to the square of the wave-length.

This law holds approximately for most substances which have been

examined. In general we have to consider several free periods, so

that we must write

(17),

* Camb. Phil. Tram., Vol. iv. Part 1 (1831). + Optique, Vol. n. p. 513.

X Phil. Mag. n. p. 361 (1901). § Bull. Soc. Min. xxvn. p. 156.
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the summation having to be carried out for the different values of m.

If the free periods lie in the ultra-violet so that all values of nm are

larger than w we may expand the function in powers of <d and obtain

after rearranging terms

r = rxw
9 + r2«

4 + r3 «>
6

(18),

where r1} r2 ,
r3 ,

are quantities depending on the values of (3m and nm
The rotatory properties of quartz have been investigated over a very

wide range. It is found that the effects may be explained by assuming

two ultra-violet free periods, one of which may be made to coincide with

the ultra-violet period, which has been deduced from the general

dispersion effects of quartz (Art. 153), the other being very short*.

The infra-red periods necessary for the explanation of refraction do not

seem to produce any rotatory effects.

169. Isochromatic and achromatic lines. The appearance

of photogyric crystals in the polariscope is materially affected by their

rotatory effect. The calculation of the isochromatic and achromatic

lines has been carried out by Sir George Airy. A full account is given

in Mascart’s Optics t. The simplest case is that of a plate cut at right

angles to the axis examined with crossed polarizer and analyser. Apart

from the rotatory effect, the appearance should be that of Fig. 1,

Plate II. Now owing to this rotatory effect the vibration which

enters near the ceutre parallel to the principal plane of the polarizer

leaves it inclined at an angle to that direction and is not therefore

completely blocked out by the analyser. The result is that there are

no achromatic lines near the centre. The general appearance is

that of the figure, omitting the dark cross within the first dark

ring.

170. The Zeeman effect. Before discussing the theory of

photogyric effects, which a magnetic field impresses on a wave of

light passing through it, we may give a short account of the modifica-

tions of the luminous radiations observed when the source of light is

subjected to strong magnetic forces. It was discovered by Zeeman in

1896 that a sodium flame placed in a magnetic field showed a widening

of the two yellow lines, and at the suggestion of H. A. Lorentz, who at

once foresaw the right explanation, further experiments were made to

test the polarization of the emitted radiations which confirmed Lorentz’s

theory. In the case of spectroscopic lines, which show the simplest

type of magnetic effect, it is found that if the light is examined

axially, i.e. parallel to the lines of force, each line splits into two,

which are circularly polarized in opposite directions. Looked at

* Drude, Optik
, p. 381.

f Optique
,
Yol. n. p. 314.
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cquatorially, each line is divided into three components, the centre

one being polarized in an equatorial plane, and the two others in

a plane passing through the lines of force.

If we look upon the radiations as being due to the vibrations of an

electron these observations admit of a simple explanation. Consider,

first, light sent out in the axial direction. Each rectilinear vibration

may be supposed to be made up of two opposite circular vibrations,

the orbits lying in the equatorial plane. Let the light which reaches

the observer travel through the flame in the direction of the lines of

force, i.e. from the north to the south magnetic pole. A positive electron

performing an anti-clockwise rotation, i.e. a positive rotation round a line

of force, will under these circumstances be acted on bjr a force Hev,

tending to increase the diameter of the circle in which it revolves

(II= intensity of magnetic field, v = linear speed of electron, e = charge

of electron). If in the absence of the magnetic field the acceleration

is n2
d, where d is the displacement, the force when the magnet is

excited is prld — Ilev, p being the mass. But if 2tt/^x be now the

periodic time, then as v is the velocity and therefore 2ird/v the time in

which the circle is described, it follows that v = nxd and that the

acceleration of the particle is nld. Hence

prld — Hev = pn x d>

and substituting nxd for v

p (:n
2 — nf) = Henx .

As the difference between n and nx is small, we may now write with

sufficient accuracy
He
2P

Finally, introducing the frequencies N and Nx in place of n and nx

we obtain

N-Nx

He
Airp

*

or if we write z - (20),
4irp

N-Nx =zU (21).

The coefficient z may conveniently be called the Zeeman coefficient.

We conclude that a rectilinear simply periodic motion is divided into

two circular motions, the longer period showing anti-clockwise rotation

if e is positive. Zeeman observed that the less refrangible component

rotates clockwise, and the more refrangible one anti-clockwise, if the

field is in the specified direction, and it follows that if our theory is

correct it is the negative electron that gives rise to all vibrations for

which this is the case.
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Looked at equatorially, the two circular orbits appear m projection

as vibrations which are rectilinear, and at right angles to the lines of

force. The vibrations which take place along the lines of force are not,

in the simple theory here considered, affected by the magnetic field.

They constitute therefore plane polarized light with unchanged period.

These vibrations have no component however which can be transmitted

in the axial direction. Looked at equatorially we should expect

therefore to see each line divided into three, the external components

of the triplet having the same period as the circular vibrations observed

in the axial direction. The agreement of the appearance, reasoned out

in this fashion, with the observed facts constitutes a direct proof that

the direction of vibration is at right angles to the plane of polarization,

if we identify variations of electric force with direction of vibration.

Although there is much indirect evidence in favour of this view, such

a convincing demonstration as that afforded by the Zeeman effect is

very satisfactory.

From equations (20) and (21) we may devise a value of e[p by
measuring AT-A7

] in terms of H. In an extended research Runge
and Paschen* have determined the Zeeman coefficient for a number of

spectroscopic lines for which the separation takes place in accordance

with the theoretical law. The devised values of ejp lie between
3 '4 x 107 and 107

,
while most reliable direct measurements of that con-

stant by Millikan give 1*77 x 107
. We conclude that at any rate as

regards order of magnitude the theory is in accord with experiment.

Our calculation has tacitly assumed that the vibrating electron is

free from constraint and acts as an independent unit with three degrees

of freedom. If we drop this assumption we are led to more complicated

magnetic effects, and indeed the majority of spectroscopic lines do not

show a more complex subdivision than is indicated by the theory in its

simple form.

Fig. 176 shows three remarkable cases f. In this figure the com-
ponents vibrating perpendicularly are drawn above those which are

parallel to the magnetic field. The peculiarity of the type marked
A is that the vibrations parallel to the field are more affected than

those at right angles to it. According to Berndt the green line of

* Berl. Abh. (A.nhang) 1902. Sitzungsber. d. Berl. Ak. xix. p. 380 (1902) and
xxxii. p. 720 (1902). f C. R, cxxvn. p. 18 (1898).

S. 20
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Helium is divided in accordance with this type A, but the experiment

is difficult in the case of permanent gases and further measurements

are much needed. It will be noticed that in some cases the same

component appears, whether the direction of vibration is at right

angles to the field or parallel to it. It would be interesting to notice

whether in such cases the light is really elliptically polarized, as it

should be if the coincidence were absolute.

The simplest form of the theory assumes that the vibrations parallel

to the lines of force preserve their period, but there are important cases

in which these also change and two vibrations, one of larger and one of

shorter period, take the place of the original one. In some cases the

original period is maintained as well
;
in other cases it completely dis-

appears. Such a phenomenon shows that the vibration along the line

of force is not free, but is accompanied by changes in directions at right

angles to itself, and that the magnetogyric effect of the accompanying

changes reacts on the original vibration.

H. A. Lorentz* in a general theoretical discussion shows that if a

spectroscopic line divides into n components, there must be n degrees

of freedom in the system which in the absence of the magnetic field are

coincident.

There is a well-defined relationship between the type of magnetic

separation and the grouping of spectroscopic lines which has been

more specially investigated by Range and Paschenf.

It is a significant fact that no Zeeman effect has yet been observed

in the case of spectra of fluted bands such as those of carbon and

nitrogen f. The magnetogyric properties of gases giving by absorption

spectra of fluted bands render it very possible that such effects exist

but have not been detected owing to their smallness. A slight increase

in power may bring them to light.

171. Photo-gyration in the magnetic field. If an electro©

attracted to a fixed centre with a force varying as the distance moves

in a magnetic field, its equations of motion are

where Hz ,
and Hz are the components of magnetic induction due

* Rapports presentes au congres international de Physique de 1900. Vol. hi. p. 1.

t Sitzungsber . d. Berl. Ah. xix. p. 380, and xxxiii. p. 702.

t C. R> cxxvii. p. 18 (1898).
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to the external field. The right-hand side of the equations which

express the components of electromagnetic force may easily be proved

from the consideration that the force is at right angles both to the

direction of the field and the direction of motion*.

If we take the magnetic field to be of uniform strength H, the lines

of force being parallel to the axis of x, the above equations may be

written more simply

'i+n*£=-P
P

ii + n>v =
e
-(Q + Hl)}

l+nX = -(R-IIrd
P J

(23).

These equations together with

KP = v2P - ^Neh
KQ=y?Q-tecNen l (24)

KR = ^2R ~ 47rNe'ti

determine the problem.

If a plane wave be propagated parallel to a line of force, P and $

vanish, and by elimination of q and £ between (23) and (24) we may
obtain two equations which only contain P and Q. For the sake of

simplicity, we shall confine ourselves to the simple periodic motion.

Writing —iu> for djdt and — to
2
for d 2

jdt
2 and introducing symbols

r and II defined by

oy = 7} + it; IIr=Q + iR
f

= n
t = Q-iR,

we obtain from (23) and (24)

oy {(n
2 — <d

2
) p + Ileay) =

<rj {(n
2 — to

2

) p - Ileoi} — ellj

KUr = v2
4Tr — 47riVeoy|

JTiij = v2
If« — 47riVWj J

"

(25)

,

(26)

.

c

r

r and a~i may now be eliminated, and we derive thus from (25) and

(26),

(K 47tW<?2 W2nr _dBnr

V
+
in

2- to
2

) p + HeJ dt2 “ dx2 *

(K 4ttNe2 \ d2n, _ d 2n
t

\
+
(n2 - ft.

2

) p- Em) dt2 dx2 *

This gives for vr the velocity of right-handed circularly polarized

* Maxwell, Electricity and Magnetism
,
Vol. xi. p. 227.

20—2
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light, and for vt the velocity of left-handed circularly polarized

light,

and

1 _ 7T
4irHe2

v 2 +
(n2 — w2

) p + Hew \

±=K+
v 2

AwNe2

(n2 - w2

) p - IIew>

1 1 MNHw
v? v 2 {n2 -w2

)
2

p
2 -H2

e
2w2

(27),

(28).

In actual observation, it is difficult to apply a field much greater than

30,000 units. Assuming for e/p the value 1*6 x 107
, we find for He/p,

4'8 x 10u. Also w for green light is 1'3 x 10 15
. If n and w differ by

not less than the two-hundredth part of their period, so that

n — w — Q x 1012
or more, the second term in the denominator of (28)

is equal to less than the six-hundredth part of the first and may
be neglected.

We may write under these circumstances, if v represents the

velocity of light in the absence of a magnetic field,

!_ _L = 2 A __ 1\ MNHw
V 2

Vr v Yty vj (n2 - w2

)
2

p
2 *

The gyric coefficient (r) is equal to (— - —^ and hence
\Vr Vy

_ 2Tre
3NHw2v

r ~~
{ll

2 - wjp
2

_ fiw
2vH _ ft

w

2 VII
(w2 — co

2

)
2

p. (
n2 —

w

2

)
2 ^ ’

where /? is an appropriate coefficient, and p. the refractive index.

If the free periods are much more rapid than those to which the

observations apply, <o in the denominator of (29) may be neglected and

r is approximately proportional to co
2
,
which agrees with the experi-

mental facts. If the electron, the motion of which has been considered,

is positive, the rotation has the opposite sign to H. As we take

a clockwise rotation as negative, this means that the rotation is right-

handed when the light travels in the direction of a line of force (from

North to South). If the vibrating electron is negative, the opposite is

the case, and the turn of the plane of polarization is then in the same
direction as that of the positive current in a solenoid having its lines

of force coincident with that of the field.

The right-hand side of (29) being inversely proportional to (n
2 — w2

)
2

becomes abnormally great when the period of the transmitted light

approaches the free period of the molecule, but the direction of

rotation remains the same whether w is greater or smaller than n.
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When n is nearly equal to w, equation (29) fails to be cm
\

must derive r from (28). \\^ V
172. Connexion between the Zeeman effect anc

gyration. We might have derived the results of the lai

directly from the general theory of refraction, taking account- of tl

changes in the free periods due to the magnetic field. Equation (42)

Chapter xi. gives us for the velocity of a wave in a responsive medium:

Arre^N

p (n
2 - w2

)

(30).

In the magnetic field, the free period 2-rrjn is altered, and is different for

circular vibrations according as they are left-handed or right-handed.

According to (19) of this Chapter we must therefore substitute

pn2 ± Hem for pn2
,
the upper sign holding for the right-handed rotation.

This introduced into (30) leads directly to (27).

The investigation of the last article has been derived from an

important paper by W. Voigt, who first gave equations which are

practically identical with, though in one respect more general than (28).

Voigt adds a frictional term to the equations of motion, in order to

include the phenomenon of absorption, but owing to the objections

raised in Art. 153 against the introduction of this term it has been

omitted here.

The importance of Voigt’s work consists in the establishment of

a simple and rational connexion between the Zeeman effect and

magneto-gyric properties. Each free period of the molecule is divided

by the magnetic field into two, one being dextro-gyric, and the other

laevo-gyric. Each of these imposes a rotatory polarization in its own

direction, the velocity of propagation being increased on the violet side

and diminished on the red side. Consider a period on the red side

of a Zeeman doublet. It is most affected by the least refrangible

component, the effect being a diminution of velocity, hence the

resulting photo-gyric effect is in the same direction as that of the most

refrangible component. On the violet side the most refrangible

component is the one that is most active, and as the effect is here an

increase in velocity, it follows that the photo-gyric effect is also in this

case in the direction of the most refrangible component of the Zeeman

doublet. This is true for all vibrations which do not fall within the

periods intermediate between those of the two components, where the

effect is in the opposite sense as easily reasoned out in the same

manner. Zeeman’s observations on Sodium light show that the most

refrangible component rotates in the direction of the solenoidal current,

giving a magnetic force coincident with that of the field, and this is

therefore the direction in which we should expect sodium vapour to
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rotate the plane P°larization, except within a very narrow range

close to the undisi,
urbed period* 0bservation confirms this.

We conclude our

>

tbeoretical discussion by deducing a remarkable

relation first brought
'jorward on more speculative grounds by

H. Becquerel. Not neces?
arlly c0"fimn* ouraelres to single free

periods, we may write equat
011

i =r+a5?^S9 (30t,)
-

where the summation extenf
5 t0 the different values °f M f°r whioh

/5 may also have different v
alues*

With the ordinaiy notat
io“ for sma11 1uantities. we m»y Put

1 — — ^ /I \
CJ

S v2 dn \W n>

or

2Sv_ d /l\ s 2

'll
3 dn2 \v

2
)

11 '

If 1/v2 has the form*
(3O°0 we may substitute differentiation

u j. ^ ..a differentiation with respect to - n2 and hence
with respect to »* for

^rentiation "*h ^pect

S» , d
V* ~^d or V*

Tf ,1 ,i 'ie increase in the velocity of propagation of the

laevogtSfS
*<^ *0 the magnetic field, the gyrie coefficient (r) is

m8v/v2 For Sr°
we lna^ wiate

>
accor(bng to (19) and (20), A-rrJIwz, so

that

r = 7tzHwviffl
dm \v2

)

= 2?r
zHu

V
dfx

dm

zHk d/x

~ir dx (31),

where the refractive index /x has been substituted for V/v. This is

Becquerel’s equation*, which will be further discussed in the next

article.

173. Experimental Facts and their connexion with the

theory. The magneto-gyric effects of the great majority of substances

are in the positive direction, by which we mean that they are in the

same direction as that of the solenoidal current producing the magnetic

field. If our theory is correct, this would mean that it is the negative

electron which is the active vibrator, a result which we had already

derived from the Zeeman effect. The salts of iron form however a

* G. B. cxxv. p. 679 (1897).
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notable exception, for it is found that those salts which are magnetic

have a negative coefficient. This at one time led to the belief that

there might be a characteristic difference between dia-magnetic and

para-magnetic bodies, the latter possessing a negative coefficient. The
following table which has been given by H. du Bois shows how far

such a distinction is justified.

Table XIV.

Diamagnetic Paramagnetic

Dextro-gyric Laevo-gyric Dex tvg -gyric Laevo-gyric

Potassium ferro- Titanium Iron Ferrous salts

cyanide chloride Cobalt Ferric salts

Lead borate Nickel Potassium ferricyanide

Water Oxygen Chromium trioxide

Hydrogen Nitric oxide Potassium bichromate

Thegreatmaj ority Cobalt salts Potassium chromate
of solid, liquid Nickel salts Cerium salts

andgaseous sub- Manganese salts Lanthanum salts

stances

l

Cupric salts Didymium salts

It is notable that the three magnetic metals, iron, nickel and cobalt,

have a positive gyric coefficient, which seems at first sight in direct

contradiction to the suggested connexion. But it has been found that

for these metals d^/dX is positive, so that if Becquerel’s law is generally

true, the negative value of r might be explained. Titanium chloride

is the only diamagnetic body which gives a negative r, but Titanium is

a magnetic metal and therefore it is possible to argue that the dia-

magnetism of chlorine overpowers the magnetism of Titanium, but

that with regard to the gyric property the metal has the upper hand.

The same argument cannot however be used to explain the positive

coefficient of oxygen, and the salts of cobalt, nickel and manganese.

The subject is suggestive, but requires further experimental treatment.

Should the negative coefficients be ultimately found to be confined to

magnetic substances, it will not be necessary to assume that their

vibrating electrons are positive. The magnetic molecule may have

a gyric property in virtue of its being magnetic, and the effects

of this property would superpose themselves on the other effects, to

which our theory has been confined. In the case of feebly magnetic

substances, the Zeeman gyration may gain the upper hand, while in
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chloride of Titanium, the pure magnetic vortex rotation may be

superposed to be paramount. This might explain some of the dis-

crepancies of the above Table. A theory of magnetic vortex-gyratior

has been given by Drude*.

The following table given by H. Becquerel t shows the magnitude
of the rotation of different substances compared with carbon bisulphide,

and gives also the values of the Zeeman coefficient calculated

from (31).

Table XV.

Substance
Eelative magneto-
gyric coefficient

X
d\

z x 10-5

Oxygen •000146 1-47 xlO" 6 5-98

Air •000150 1*44 x 10-6 6-64

Nitrogen •000161 1-68 xlO" 6 5-74

Carbonic acid •000302 2-00 xlO- 6 9-07

Nitrous oxide •000393 4-85x10- 6 4-88

Water •308 1-99 x lO- 2 933
Benzine •636 4-88xl0- 2 7-85

Phosphor trichloride •651 4-71x10-2 8-30

Carbon bisulphide 1-000 9-71x10-2 6-20

Liquid phosphorus 3120 2-52 xlO" 1 7-41

Titanium bichloride -1-358 9-96 x lO" 2 -216

Excluding the dextro-gyric titanium bichloride it will be noticed

that the Zeeman coefficients for these substances, having widely differ-

ent dispersions, are all of the same order of magnitude, thus giving a

substantial confirmation of the correctness of Becquerel’s law. The

average value of z in the above Table is about half that of the lowest

aud one quarter that of the highest number obtained directly from

observations with luminous vapours. An apparent increase of electric

mass, in the more complicated structures of molecules which do not give

line spectra, is thereby suggested.

Absolute determinations of the magnetogyric coefficients have

been made for carbon bisulphide and for water. The most recent

determinations, reduced to unit magnetic force, are, in minutes of

arc .

* Lehrbuch der Op'ik, p. 384.

f C. R. cxxv. p. 683 (1897).
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Table XYI.

Bisulphide of Carbon.

Lord Rayleigh* for Sodium light, £=18°, r=0'04200
Kopselt „ 53 33

0'04199

jj

0
oII“to 0'04207

Becquerel J „ >3 33 0'O4341

Water.

Arons § t- 23°, 0'O1295

The gyric effect of thin films of iron, when magnetized to saturation,

is enormous. Its discoverer, Kundt, found it to be at the rate of a

complete revolution for a thickness of *02 mm. which gives 200,000°

for one centimetre, an effect which is 290 million times greater than in

bisulphide of carbon. Cobalt gives a value nearly as great as found by
Du Bois, and nickel about half as great.

The magneto-gyric coefficient is in general roughly proportional

to the square of the frequency, showing that the vibrations which

chiefly determine it have a very small wave-length, but anomalous

cases have been noted. Kundt n observed that thin iron films rotate

the plane of polarization of red light more than that of blue light, and

LobachU measured the rotational coefficients of iron, nickel and cobalt

in different parts of the spectrum. The diminution in the angle of

rotation between A. = 6'7xl0-5 and A =

4*

3xlO~B was found to be

approximately for iron 45%, for cobalt 23 %, and for nickel 41 %.
An interesting confirmation of the theory given in Art. 169 is

obtained by the observation of the gyric effects in the neighbourhood

of absorbing regions of the spectrum. As has been pointed out in that

article, the introduction of the Zeeman effect into Sellmeyer’s equation

leads directly to the conclusion that on both sides of an absorption line,

there is a strong magneto-gyric effect in the direction in which the more
refrangible members of the Zeeman components rotate. This fact had
been observed in the neighbourhood of the sodium lines by Macaluso

and Corbino** (the gyric coefficient being positive, i.e. the rotation in

the direction of the current producing the field). It has been further

extended and commented upon by H. Becquerelff.

* Collected Works, Yol. ir. p. 360:

f Wied. Ann. Yol. xxvi. p. 456, 1885.

$ Ann. Cliim. Phys. Yol. xxvii. p. 312, 1882.

§ Wied. Ann. Vol. xxiv. p. 161, 1885.

|)
Wied. Ann. Vol. xxm. p. 237, 1884.

"i Wied. Ann. Vol. xxxix. p. 346, 1890.
** C.R. cxxvii. p. 548, 1898. ,

tt C.R. cxxvxi. p. 647, 1898.
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174. Double Refraction at right angles to the lines of force.

If a plane wave traverses the magnetic field at right angles to the

lines of force, the vibrations parallel to the field are propagated with

different velocities from those at right angles. This follows also from

Sellmeyer’s theory of refraction in combination with the Zeeman effect.

Taking the simplest case of a line split by the magnetic field into a

Zeeman triplet, the outer components affect the velocity of light of the

vibrations normal to the field, while the central component affects the

vibrations parallel to the field. Approaching an absorption line from

the less refrangible side, the first effect will be a diminution of the

velocity of both components, but to a greater degree of that component

which lies nearest, i.e. the vibration normal to the field. Similarly

approaching the absorption line from the violet end, both components

are accelerated, and it is again the component vibrating normally to

the field which is most affected. Hence there is double refraction in

such a sense that towards the red end the vibration parallel to the

line of force is propagated most quickly and on the violet side the

vibration normal to the field. This result was predicted by W. Voigt

from the theory and verified experimentally by him in conjunction

with Wiechert*.

To obtain an expression for the amount of double refraction to

be expected, we write Sellmeyer’s equation for the light vibrating

normally to the field in the form:

where

_L = }£+ ^ + $
Vn (nr'-«?y (n? -<**)'

n 2 = rc + &irzu)II n 2 = n2 — Airz^II
;

• 1 sr. 2(3'(n
2
-<*>*)

'

' vn
2 ^

(V - co
2

)
2- 1GirWH •

The vibrations parallel to the lines of force are undisturbed and

hence

—
a = K+

vn

P
2 2 *

n - w

For 11 = 0, the two expressions must agree, and hence 2/?' = /?.

Writing a2
for

lQ^WH2
/{n

2 -^2

),

we have 11/3 /3

Vn Vp n~ - co
2 - a2 n2 - w8

/3a
2

(n2 - or) O2 - co
2 - a

2

)

*

* Wicd. Ann. Yol. lxvii. p. 845, 1899.
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If we treat a2
as a small quantity compared with n2 — w2 and reintroduce

its value, we find

I 1 16/VjgV//8

v 2 vp
2

(?r - o>
2

)
3

When the vibrations on the contrary are so near to the free un-

disturbed period that n2 — <o
2

is small compared with a2
:

II £
vn % [n - o)-)

The double refraction is now in the opposite direction, and hence

close to the free period the perpendicular vibrations are propagated

more quickly when n > w, i.e. on the side of lower frequency.



CHAPTER XIII.

TRANSMISSION OF ENERGY.

175. Propagation of Energy. Energy may be transmitted

through a surface either by the passage of matter in motion, or by the

performance of work. An example of the first kind of transference

of energy is furnished by the conduction of heat through gases, the

kinetic energy carried by the molecules through a surface at right

angles to the flow of heat, being greater in the direction of the flow

than in the reverse direction. But we are not here concerned with

this simple and direct method of transference of energy.

Waves propagated through elastic solids carry energy across a

surface owing to the tangential forces, which will in general do work.

A transference of energy results though the velocities and stresses are

alternately in opposite directions, when their product contains a part

which is not periodic. As the propagation of energy can only be

accurately investigated when the mechanism of the motion is known
we study in the first instance some simple cases of the transmission of

waves through elastic bodies.

176. Waves of pure compression or dilatation in a perfect

fluid. We choose a frictionless fluid in order to simplify the equations

as much as possible. Putting n= 0, and writing rj, £ for the dis-

placements, equations (9) Art. 132 become

d^_
a
dS\

df~ V
dx

d2
r) d8

W=V
d-y\

<n = a
ds

dt3
V

dzj

(1),
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here v
2
is written for k/p and

s_d£
,

dy dj

dx
+
dy

+
dz

For the stresses we have according to (7) and (8) Art. 131

S=T= £7=0,

.(2).

P=Q = B = v
2
D$,

where the density is now represented by D.

If we consider in the first place a plane wave, the displacements

being parallel to the axis of x, the first of equations (1) becomes

dn_ 2^f
dt2

V
dx1 ’

which is satisfied by

£ = A sin^ (x - vt).

If W represents the work done across the surface

dJV __
_pd£

dt dt

= -vsD d£ d£

dx’ dt
*

where the negative sign has to be introduced on the right hand because

P is taken as positive when it is a tension and acts therefore in the

opposite direction to that in which the velocities are taken as

positive.

Substituting for £ and confining our attention to the plane x-0.

By integration

dW 4ttVX»A 2
2tt

-gr
= » cosx^

w= 2ttVZ)A 2

X2
t +

A. . 4tt .-— sin vt
47TV A )•

The second term vanishes at intervals of time which are equal to

half a complete period, and becomes more and more negligible as

t increases. Leaving this term out of account, we may write for the

work transmitted through unit surface

W=\DV?vt (3),

where V1 stands for the maximum velocity. If the whole mass of air

through which the waves have spread in time t had a velocity equal to

the maximum velocity Vly its kinetic energy would be equal to that

transmitted through the surface. As the average kinetic energy in

a simply periodic wave is equal to half the maximum energy, only half

the energy transmitted through the surface is in the kinetic form, the

other half being potential.
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It is important to notice that the transmission of energy depends

on the coincidence of the phases of velocity and pressure. The con-

densed portions of the fluid move in the direction in which the wave
is propagated, and the rarefied portions in the opposite direction

;
hence

the work done while the air moves forwards is not undone while the

air moves backwards.

We next take the case of waves diverging from a point. The

motion to be considered belongs to an important class in which the

velocities may be represented as the partial differential coelficients

of the same function <£, called the velocity potential.

Put
d£ _d$

'
dr) _d<f> dt _ d4>

dt dx ’ dt dy ’ dt dz

'

Equations (1) are now all contained in the simple equation

d2
<f>

dP
= v2V2

<f> (4).

For the stress P we have

dP
dt

2 r-k dS
V D

di

dfy

dt2 '

Hence if P be zero in a state of rest

:

P=D
dt

Ji <f>
depends only on the distance r from a fixed point which acts

as a source from which the vibrations emanate, we have

d<f> _ d$> x
dx dr r*

dfy

dx2

d~4> x*

dr2 r2

d<j) 1

dr ’ r

d<f> a?

1r V‘
,72 I J2j

Changing similarly the variable in we find by addition

Vt. d?<f> 2 d<f>V '#,= 3? +
r If

1 d2
r<f>

r dr 2 '

Equation (4) now becomes

ds
rcf> _ 2

d2r$

~W ~ v
dr2 ’
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the solution of which is r<f> -/(f — vt),

or confining ourselves to the simple periodic motion

</> = - siny(f-4

This value of <f> is therefore a solution of the differential equation (4)

For the radial velocity we have by differentiation

d$ = A
dr r

2tt 2 ir . ,x 1 • 2tt
-r- cos -T- (r — vt)— sin—
A A T A

(5).

The volume of fluid passing in unit time through the concentric

spherical surfaces round the origin as centre is 4irPd^ldr, which near the

27T

origin where r is small compared with A. becomes equal to 4ttA sm -r- vt.

Our equations therefore represent a state in which an elastic fluid is

alternately introduced and withdrawn at the origin, the consequent

changes of pressure being then transmitted outwards in the form of

condensational waves. It is instructive to compare the two terms the

sum of which according to (5) makes up the velocity. The first, vary-

ing inversely as the distance, is the important one at distances great

compared with the wave-length, the second varying inversely as the

square of the distance is only appreciable near the origin. We note the

difference in phase between the two terms amounting to a right angle,

with which we have already become familiar in the elementary treat-

ment of wave-propagation (Arts. 47 and 48). Equation (5) further

shows that in consequence of the second term the energy of motion

near the origin diminishes very rapidly. As regards the energy trans-

mitted outwards we know that in a progressive wave and in the absence

of any dissipation through absorption or otherwise, the law of the

inverse square must hold. We conclude that near the origin the

energy must partly be stationary. We can prove that the transmitted

energy is in accordance with what is to be expected from the laws of

energy, by remembering that the work done per unit time across unit

surface is equal to the product of the pressure and the component of

the velocity which is normal to the surface. In the case considered,

the velocity being everywhere radial, the rate of work transmitted

through a sphere of radius r is

dWjdt = — 4-trr-P d<j>jdr

= — 4irDr2
d<f>/dt . d<j>jdr

= 2tt_DA 2 sin (ait — Ir)
j/

sin (a>t — Ir) - ^
cos (W —

/r)J
.

Integrating with respect to the time and leaving out periodic terms,

we find W = 2iru)DAHt.

This expression does not contain r and hence the work transmitted

through concentric spheres enclosing the origin is constant. It follows
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that the work transmitted in a given time through unit surface varies

inversely as the square of the distance. For a fuller treatment of the

subject the reader is referred to Lord Rayleigh’s treatise on Sound,

Vol. II., Arts. 279 and 280.

177. Plane waves of distortion in an elastic medium.
Let the displacements be parallel to the axis of z and be denoted by

£, the wave normal being the axis of x. The only force which can do

work across the plane xy is the tangential stress which in Art. 129

lias been called T, and which according to (7) Art. 131 is equal to

ndtjdx
, £ being zero in the present case. The stress is here taken to

be positive when the portion of matter on the positive side of the

plane yz acts on the matter which is on the negative side with a force

directed along the positive axis of z. Hence for waves travelling in

the positive direction, if W be the energy transmitted across unit

surface,

aw aiat
dt

n
dx dt'

If £ = A sin ~^(®~ vt)

and the coefficient of distortion n is replaced by v^JD, we find, as in

the case of the sound-wave, leaving out periodic terms,

W=\DV?vt (6),

where V1 denotes the maximum velocity.

178. Sphere performing torsional oscillations in an elastic

medium. Consider displacements in an elastic medium defined by

where

_ ^4* f —^
v = -~dz’

Q=
~dy

,
A . 2tt . .

<f>
= — sm — (r - vt).

r a

The displacements satisfy the condition

d̂
0

dx dy dz ’

which shows that there is no condensation.

a i - o d
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cr -i t a * 1 d2
£,

bimilarly V 4 = ^^
It has been shown in Art. 135 that these equations satisfy all the

conditions of a wave propagation, the waves being purely distortional,

and v2 being identified with njD.

As <t>
does not contain x, y, z explicitly,

d<j> _ d<f> y d4> _ d<j> z

dy dr ' r* dz~ dr' r'

Hence x£ + yy + z£=-y^ + z^
dz dy

= 0 .

It follows that the displacements at any point are at right angles to

the radius vector drawn from the origin to that point. As there are

no displacements parallel to the axis of x, the displacements are along

circles drawn round OX as axis.

Let p be the distance of any point from the axis, so that r2 = a? + p
2

.

We obtain the amount of the displacement by resolving y and £in a

direction at right angles to p in a plane parallel to the plane of yz.

This gives for the displacement

:

p p \ dz J dy/

_z2 + y* d<p

pi' dr

__ p d(j>

r dr'

The angular displacement obtained by dividing the actual displacement

by p only depends on r, and is therefore the same at all points of

a sphere having the origin as centre. Each such sphere performs

torsional oscillations as if it were rigid. We may therefore imagine

an inner sphere to be actually rigid and the oscillations to be main-

tained by forces applied to this sphere. Our system of equations will

then tell us how these oscillations are propagated outwards.

In the language of Optics the vibrations at any point are polarized

in a plane passing through OX which is the axis of rotation. The

angular displacements are

1 d<f>

r dr

27tA

Ar
'2

2tt , .

cos “r- {r — vt)
A

27

r

T (r — vt) •(7),

and are nearly equal to the first or second term of this expression

respectively, according as r is very small or very large compared with

A/2 tt. Comparing large and small values of r, we have here the same

change of phase of a right angle which has been noted in Art. 173.

s. 21
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The maximum angular displacement at a distance S from the origin as

obtained from (7 ) is :

A n/47r*S
2 + X2

/\S3
,

and this is the amplitude of oscillation which must be maintained at a

sphere of radius S in order to cause an angular amplitude 2-n-AjXr
2
at a

large distance. If the maintained angular amplitude is B, it follows

that for large distances the angular amplitude is

BS2

r
2 Jl + k'fa'S*)-'

'

The actual amplitude is obtained on multiplying this expression by

r sin 6, where 6 denotes the angle which r forms with OX. To
calculate the energy communicated by the rigid sphere to the sur-

rounding medium, we make use of the obvious proposition that the

energy^ transmitted through all concentric spheres must be equal

and we may therefore simplify the calculation by considering only a

sphere of very large radius.

If we write ( V1 sin 6)/r for the maximum velocity at a large

distance, the total energy transmitted through unit surface at any

time is by (6)
W=\BV?vt sin

2
OJr

2

,

and the work transmitted through the complete sphere is

P 2trWr2 sin Odd = ["M V^v sin2 6d6 =~D V?vt (8).
Jo Jo o

Substituting the value of Ff, we find for E
t the total energy

transmitted,

Tp_ &TrI)vt S4 /2ttBv\ 2

1 + X2
(47r\S'

2)-‘ \~1T

)

_ 4tt DSvt /ZttBSvA

3 1+X2 (4tt2>S'
2)- 1

\ X )
'

The bracket on the right-nand side represents the greatest velocity in

the equatorial plane of the rigid sphere.

It should be noticed that the energy transmitted diminishes with

increasing wave-length (i.e. increasing period) and this diminution is

the more important the smaller the radius of the embedded sphere is

compared with the wave-length.

179, Waves diverging from a sphere oscillating in an
elastic medium. The problems discussed in this and the preceding

article were first solved by W. Voigt*. Kirchhoff t considerably

Amplified the mathematical analysis and more recently Lord Kelvin f

#
Crelle’s Journal

,
Vol. lxxxix. p. 288.

f Crelle’s Journal
,
Yol. xc. p. 34.

t Phil . Mag . Vol. xlvii. p. 480 and xlviii. pp. 277, 388*
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has treated the same question very completely, adding several new and
interesting results. We imagine a sphere embedded in an elastic

medium, to which it is rigidly attached, and performing periodic linear

oscillations according to the formula A sin mt. The reader is referred

to Lord Kelvin’s Baltimore Lectures for the complete solution of the

problem, we shall here confine ourselves to the question, of emission of

energy in an incompressible medium. For this purpose it is only

necessary to consider the motion at a distance which is large compared

with the radius of the sphere (8) and the wave-length. If the oscil-

lations of the sphere take place along the axis of x
, Kelvin’s equations

for the displacement when r is very great, are

IS (J-i) sin

V = - \
ASp! sin

1 AS

^

sin (W - Ir)
2 j

These equations give

:

£x + vy + & = 0,

(9).

showing that the vibrations take place at right angles to the radius -

vector. The symmetry of the expression for the displacements as

regards y and z shows that the displacements take place in meridional

planes For the resultant oscillation we have

(c
2

-t- rf + £
2)i = AS sin 0 sin (W — Ir),

JiV

where 6 denotes the angle between the radius vector and the axis of x.

The sign of the square root which occurs on the left side is determined

by the consideration that when x = 0, the last equation must agree

with the first of the equations (9). We note that in this case there is

not the change of phase of a right angle which occurs when the sphere

performs torsional oscillations. In the language of Optics, the sphere

may be said to send out polarized light, the vibrations being in

meridional planes and at right angles to the ray. The amplitude is a

maximum in the equatorial plane, zero along the axis, and in intermediate

positions is proportional to sin 6. If as in the last article, we write

FiSinfl/r for the maximum velocity, we may apply (8) directly to obtain

the transmitted energy which is

DV^vt
6

= ZirDcJAWvt.

The emission of energy is therefore inversely proportional to the square

of the period.

21—2
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180. Divergent Waves of Sound. The theory of Sound
furnishes several important applications of the communication of

energy from a vibrating body to a surrounding medium. If a

stretched string vibrates backwards and forwards, the air which is

compressed on one side is able to flow round the string and to diminish

the rarefaction which tends to form behind the string. Under these

circumstances comparatively little energy escapes in the form of sound-

waves. Stokes* calculated the emission of the actual sound and
compared it with that which would have been emitted if the lateral

motion in the neighbourhood of the string were omitted. For a piano

string of ‘02 inch radius sounding the middle C (wave-length about

25 inches) it appears that the prevention of the lateral motion would

increase the intensity 40,000 times. This, as Stokes points out, shows

the importance of sounding-boards, the broad surface of which is able

to excite intense vibrations even though the motion itself is small. The
following experiment may be described in Stokes’ own words. “ The

increase of sound produced by the stoppage

of lateral motion may be prettily exhibited

by a very simple experiment. Take a tuning-

fork, and holding it in the fingers after it has

been made to vibrate, place a sheet of paper,

or the blade of a broad knife, with its edge

parallel to the axis of the fork, and as near

to the fork as conveniently may be without

touching. If the plane of the obstacle co-

incide with either of the planes of symmetry of the fork, as represented

in section at A or B, no effect is produced; but if it be placed in

an intermediate position, such as C, the sound becomes much
stronger.” •

The motion of air round the sounding body is the more effective

the shorter the wave-length. Were the length of the wave infinitely

great, the air would move like an incompressible fluid backwards and

forwards round the source of sound, and there would be no emission of

energy once this motion is established. Stokes shows by applying the

analysis to the case of vibrating spheres, that this is the explanation of

an experiment due to Leslie, in which the sound of a bell placed

in a partially exhausted receiver is diminished by the introduction of

hydrogen.

Fig. 177.

181. Transmission of energy by electromagnetic waves.

When we consider the transmission of energy in a variable electro-

magnetic field we are met at once by the difficulty that we are ignorant

* Phil. Trans. Vol. clviii. p. 447 (1868), Rayleigh, Theory of Sound, Vol. n.

p. 306.
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of the mechanism by which electromagnetic action is propagated.

Hence we cannot obtain an expression for the work done across a

surface, unless we form an hypothesis to specify the displacements in

the medium. In the special cases which we have to consider here, the

difficulty may be turned. According to Maxwell a medium of

permeability ya, subject to a magnetic force which at any place is H
,

possesses energy which per unit volume is measured by /xIPlQ-rr.

Similarly if K be the dielectric constant and E the electric force,

KE2/8tt is the electric energy also per unit volume. Consider now a

plane wave propagated with velocity v in the direction of the axis of z.

Equations (22) Art. 140, which determine P, Q, the components

of electric force, in terms of a, /?, the components of magnetic force,

give us
KE 2 =K (P 2 + Q

2

)
= KpP (a2 + ft

2
).

As Kp = 1/V and a2 + yS
2 measures the square of magnetic force, it

follows that

KE 2 = fxH 2
-,

so that we may, in the case considered, write for the energy per unit

volume either pH2

!
Air or KE2

jfar. The wave need not be homogeneous

and may be either plane or elliptically polarized or not polarized at all.

Consider now a wave-front advancing from left to right and coinciding

with the plane of xy at the time t = 0. At any time t, the wave-front

will be at a distance vt from the origin, and the energy which has

crossed unit surface of the plane of xy will be that contained in the

volume having the unit surface as base and as length the distance vt

measured along the axis of z. If the magnetic force in the wave-front

is of the form
H=H<> cos (mt - Iz),

the average value of H 2
is equal to \Pdi- Hence the energy which

has crossed unit surface in time t, putting /*=1, is Hfot/S-rr. The
work done across a small surface of any wave-front cannot depend on

the question whether the wave is plane or not. We are therefore

justified in using the expression obtained whenever the electromag-

netic disturbance follows the simple periodic law.

We next treat of a simple case in which we can trace the loss of

energy of a radiating source. We adapt for this purpose the results

of Art. 178, substituting the magnetic force for the displacement, so

that we may write

a = 0, /? = -
d<f>

dz* y
d<f>

dy

= — sin (Ir— oit)wnere

(10),

(11).
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These equations satisfy (19) of Art. 138, and represent therefore a

possible distribution of magnetic force. It follows from the results of

Art. 178 that the magnetic force at a distance p from the axis of x is

d<f>

p Tr
/

r

and that the lines of magnetic force are circles having OX as

axis.

We next consider a region round the origin so small that the

phase at all points lying in it may be considered identical with that

at the origin. Within this region we may write

. A . .

fp = sin o>t.

r

The components of current are obtained from (12) Art. 136 :

a
dp _ dty dfy

77

dy dz dy2 dz2

d2
<f>

~ dx2 ’

4ttV
d2

4>

dydx *

4-rrw — - d2
cf)

dzdx *

For the electric forces as obtained from (17), Art. 137, we have

KP = d d- 1
d<j> d Ax

dx ’ dt ’ dx dx
. 5 COS mt.
tor*

XQ = d- 1
dfj) d Ax

dy' dt ‘ dx dy
. 5 COS (lit,

o>r

KR =
_d_ d- 1

dcf> d_ Ax
dz

'

dt ’ dx dz ’

; COS (lit.

wr

The electric forces close to the origin are therefore derivable from a

potential

Ax
» cos (ot.

wr

If a quantity of electricity — e is placed on the axis of x at a

distance \h from the origin, and similarly a quantity + e at the

same distance on the negative side, the electrostatic potential of such

a so-called doublet is known to be — ehx/r3. Hence we may represent

the electric forces in the case we are considering by means of a doublet

if we make
eh = (A cos (nt)/(ii.

The system of waves represented by (10) and (11) may therefore be

considered to be produced by a vibrating electric doublet at the origin,

the two charges oscillating in the same period, reaching a maximum
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distance h and crossing at the origin. The quantity eh is called the

moment of the doublet, for which we may write M cos wt.

The total energy dissipated per unit time by the vibrations of

such a doublet may now be calculated. At a large distance the

magnetic forces are

(3 = ^ Mw cos (Ir - wt),

7

from which we obtain
;

ty Mw cos (Ir— wt),

/J
2
+ y

2 - ¥w2M2 sin
2 9 cos2

(Ir — wt)/r2 (12),

where 9 is the angle between the radius vector and the axis of oc.

Hence through unit surface of large spheres the amount of energy

which passes in time t is l
2w-M2 sin2 9 vtj^Trr. Integrating this over

the whole sphere it becomes ^l
2w2M'2

vt, or expressing l and a> in

terms of r and v (where t represents the time of vibration), we finally

obtain for the energy sent out in time t by the vibrating doublet

:

IWMH/Svt* =M2w4
tj3v.

In order to form some numerical estimate of this loss of energy

consider the positive charge to remain fixed at the origin, and the

negative charge to vibrate according to the law k cos wt. The maximum
energy of the negative electron is \mw2

l? or ^mw2
l\f

2
je

2
,
if m denotes

its mass. From this we calculate the fraction of the maximum energy

which is lost in a complete vibration taking up a time 2kjw, to be

8K2
e
2/3Xm. The ratio elm, is known to be nearly l

-

8 x 107 and for e we

may substitute 10
-20

. This gives the loss of energy as being : 4'8 x 10 -12
/A.

For violet light we have A = 4 x 10~5
, so that in each period a particle

sending out such light would lose about the ten-millionth part of its

energy. The motion of the particle, taking account of the loss of

energy by radiation, would have to be represented by the expression

he~ Kt cos wt, where the coefficient k may be calculated from the data

obtained. At each vibration there is a fractional diminution of the

maximum velocity equal to kt and a fractional diminution of the energy

equal to 2 kt. Hence 1/kt which is the number of vibrations in which

the amplitude diminishes in the ratio 1 : e is 106
/6 or approximately

170,000. The small diminution in vibratory energy consequent on

radiation justifies the criticism made in previous articles respecting the

introduction of a frictional term in order to account for the so-called

anomalous dispersion.

Consider now two similar doublets with their axes at right angles to

each other, the positive electron being stationary and the negative

oscillating in one case according to the law h cos wt and in the other

according to the law h sin wt. The electromagnetic effect will be the
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same as that of a single electron revolving with uniform speed in a
circle of radius h, the loss of energy for each of the two vibrations at

right angles to each other is that given above, and hence the total loss

per unit time of such an electron revolving in time r is 327r4iHf
2/3ur4.

We arrive therefore at the remarkable conclusion that an electric

charge describing a circle with uniform speed radiates energy, and
as the speed is constant, the radiation can only depend on the

acceleration which is directed to the centre. Writing f for the

acceleration we have

. r2 167rW _ 167T4il/8

J
T4 <TT

4

We obtain therefore §e-f^jv for the loss of energy in unit time.

This expression which is here proved for the special case that the

acceleration is at right angles to the motion holds generally so long as

the velocity is small compared with the velocity of light. For a more
detailed discussion, the reader is referred to Larmor’s Aether and
Matter

,
Chapter xiv.

182. Molecular scattering of light. If a source of light

pass over a molecule or any particle which is small compared with the

wave-length, a secondary disturbance spreads out from the small body.

If the incident light he polarized, the scattered light is polarized also,

the vibrations taking place in the plane passing through the direction

of vibration at the obstacle
;
the amplitude of the scattered light is

proportional to sin 6, if 6 denote the angle between the vibration at the

origin and the scattered ray. Although the intensity of the scattered

light can only be calculated when we have defined the property of the

obstacle in virtue of which it acts, some important conclusions may be

drawn which are independent of any particular theory. It is well

therefore to proceed as far as we can in the most general manner.

Let the original light be defined by some vector R0 cos (W - lx)

where x is measured from the obstacle. The corresponding vector in

the scattered light at a distance r may then be written in the form

[Ai cos {o>t - Ir) + sin {<at - Ir)] R0 sin 6jr (13),

where the factor B1 indicates a possible change of phase at the obstacle.

Taking the square of the amplitude as a measure of the energy and
noting that the average value of sin

2 6 over the whole sphere is 2/3, we
find that the total energy emitted is §7r (Ai

2 + Bf) R<?, and this must

be derived from the energy of the incident beam. Let now a parallel

pencil of light traverse in the direction of x a thin layer of a medium
containing N particles per cubic centimetre. If B be the energy
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transmitted per unit surface we may define the coefficient k which

measures the gradual weakening of the incident beam by E~xdE= kdx.

A layer of thickness dx scatters energy %w{A x + Bf) R0
2 Ndx per unit

surface, if R0
2
is the energy per unit surface transmitted by the original

beam. Hence
%ir(A 1

a + B1*)N'=k (14).

We next find the effect of the layer dx at some point 0 which we
take to be at a distance p from the layer. Drawing Fresnel’s zones

with 0 as centre and applying the method of Art. 46, we find that the

total effect of the layer is equal in magnitude to half that of the first

zone which has an area irp\. The phase of the resulting vibration is

that corresponding to a distance p + and the scattered light at 0 is

therefore represented by

[^isin (<at — lp) —Bx co$ Qat—lp'j\ Ra^Ndx (15),

the factor 2fv having been applied to account for the inequalities of

phase of the vibration reaching 0 from different parts of the first zone

(see Art. 46).

It should be noticed that it is only in the direction of the original

light that the scattered rays can combine together so as to take part

in the regular wave motion, because a displacement of one of the

obstacles has no effect on the ultimate phase of the disturbance at a

given point if the scattered ray lies in the direction in which the wave

is propagated. The vibration indicated by (15) has now to be combined

with that of the original wave, which at the point considered is

R0 cos (mt - Ip). The term in B indicates a diminution in amplitude,

while the term in A indicates a change of phase. If the layer dx were

uniform as to its properties and had a refractive index /x, it would

cause a retardation of the incident light (/a — l)dx which is equivalent

to an alteration in phase of 27r (/a — 1) dx/h. We conclude that as

regards the rate of propagation the medium acts like one having

refractive index /a if

2ir (/a — 1) = (16)*

The proportional diminution in amplitude is Bx^Ndx and the

proportional diminution in energy will have twice that value. Hence
with the same meaning of h as before

Jc = 2\2BXN. (17).

In all cases of more immediate interest Bx is small compared with

A x ,
so that in (14) Bx may be neglected. Combining that equation

with (16) we obtain

!
32tt3 Qa-1yk ~

3iVX4 ^8)-

This important equation was first deduced by Lord Rayleigh from the
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elastic solid theory of light, the scattering being supposed to he due to

a weighting of the medium by the small particles. Rayleigh further

showed that the same relation held in the electromagnetic theory if the

scattering is due to local changes of inductive capacity, while the

above investigation shows that it must generally hold whatever theory

we adopt. But while there is a general connexion between the

coefficient k and the refractive index, we cannot calculate the value

of either of them without specifying the properties of the particles.

According to our present views of refraction and dispersion the

molecules act as resonators, so that each of them may be considered

to be the seat of an electric doublet, which becomes the source of the

scattered light. If M be the moment of this doublet, the electric

force at a distance r is, according to Art. 181, 2-n-oj VM sin 0/rk.

Giving to A and B the same meaning as in (86) Art. 151 and writing

e£ for the moment of the doublet, the electric force in the scattered

light is represented by

[A cos {<Jit — lr) + B sin (wt — Irj] ew3R0 sin 6j£trr.

The comparison of this equation with (13) gives the relationship

between the present A, B and the previous A 1} B1 . The equations (16)

and (17) become by the substitution of the new coefficients :

2Q*- l) = eANV* (19),

k-emBNV. (20).

The retardation of phase at the source of the scattered light is BjA ,

which from (19) and (20) is equal to k VJ2 a> (/* - 1) or, in terms of the

wave-length, tokk/Air (^ - 1).

Substituting the value of k from (18) we find the retardation of

phase to be equal to 8^(/a- l)/3iVX3
. In the case of gases at normal

pressure Nk3
is of the order of a million for blue light, so that only a

very high value of would make the change of phase appreciable. The
values required can only be found in close contiguity to an absorption

line in the region of selective refraction.

The elementary treatment of the problem which we have given

may be replaced by the investigation of Art. 151. It will be noticed

that equation (40) of that article becomes identical with (19) when k is

a small quantity, the square of which may be neglected, and when the

refractive index does not differ much from unity. The constants k

and k are easily seen to be connected by Attk - kk.

If each molecule is supposed only to possess one electron having

a free period 2-jrjn we may apply Art. 152 to determine the value of A.
The light scattered per unit volume then becomes

, _ <?
2A 2iVw4 87rA^4w4

_* =“ 6-
=

3P
2 (n

2 - (a
2

)
3 ~ 3?(k*~ V?*
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where A
x is the wave-length corresponding to the free period. When

Ax is small compared with A we are in the region of the ordinary

dispersion of transparent media, and, as a first approximation, the

scattering is inversely proportional to the fourth power of the wave-

length, but it may become very considerable, as we have already seen,

when A becomes nearly equal to A1#

The first serious discussion of the colour of the sky based on the

effect of small suspended particles is due to Lord Rayleigh* though

the idea itself was not new at the time and had received support from

Tyndall’s experiments with precipitated clouds. Rayleigh showed that

both the colour and the polarizing of the sky may be accounted for by

the effect of scattering. He returned to the question subsequently!

in a paper in which the question is raised whether the molecules of

air are by themselves and without the help of suspended extraneous

matter sufficient to explain the observed luminosity of the sky. The

conclusion arrived at was : “that the light scattered from the molecules

would suffice to give us a blue sky, not so very greatly darker than that

actually enjoyed.”

If atmospheric absorption were completely accounted for by scatter-

ing, the total light absorbed in the atmosphere might be calculated by

means of the expression (18). If this is put into the form

, 32
3 A -

1

N
jn
I A4

'

and we remember that N is proportional to the density D and that in

the case of gases (/* — 1)/A7 is independent of pressure and temperature

we see k is of the form cD where c only depends on the wave-length and

on the nature of the gas. From E-1dE = kdx we therefore calculate

that the fraction of light which is transmitted is equal to e~fcDdx. If

H represent the height of the homogeneous atmosphere of normal

density Da, the fraction of light transmitted, when a pencil of light

traverses the atmosphere vertically downwards, is e~kH where we may
substitute again for k its value of (13), putting for N the number of

molecules per cubic centimetre when the gas is at normal pressure

and temperature, and for /j. the corresponding refractive index. The
value 272 x 1019 obtained by Rutherford and Geiger for N agrees so

well with other recent determinations that we may assume it to be sub-

stantially correct, and the theoretical transmission of the atmosphere

may therefore be compared directly with Abbot’s experimental results.

Unfortunately Abbot does not give the height of the barometer on

Mount Wilson which I have assumed to be 614 mm. corresponding with

the average calculated value at an altitude of 1780 metres.

* Collected Works, Yol. i. p. 87.

t Collected Works, Vol. iv. p. 397.



324 THE THEORY OP OPTICS [CHAP. XIII

In Table XVII. the first column gives the wave-length : the second

column contains the observed values of the transmitted energy for

Washington, taking all observations into account, while the third

column gives the number calculated from the observations on Feb. 15,

1907, when the air seemed exceptionally clear. The calculated values

are entered into the fourth column. The last three columns give the

corresponding numbers relating to Mount Wilson. The selected clear

day in this case was Oct. 11, 1906.

TABLE XVII.

Wave-length

Washington Mount Wilson

Observed
mean

Observed
clear day Calculated

Observed
mean

Observed
clear day

Calculated

4x10“ 6 0*55 072 071 073 0-76 0-76

5 •70 •84 •87 •85 •89 •89

6 •76 •87 •94 •89 •92 •95

7 •84 •90 •96 •94 •96 •97

8 •87 •94 •98 •96 •99 •98

10 •90 •96 •99 •97 •99 •99

The close agreement between the two last columns shows that on

a clear day on Mount Wilson atmospheric absorption is practically

accounted for by the scattering of the molecules of air. There is a

slight indication of selective absorption in the orange that may be due

to aqueous vapour, but otherwise the agreement is good. It is remark-

able that even at Washington the calculated absorption for the light

should so nearly agree with the calculated value : this means that even

at the sea level the greater part of the absorption on a clear day is due

to scattering by the molecules of air. We also possess measurements

of the luminosity of the sky made by Majorana near the crater of

Mount Etna and on Mont Rosa. These are quoted and discussed by

Lord Kelvin*, who took account of the illumination due to light

reflected from the earth and that scattered by the atmosphere itself. If

e and e be the proportion of this secondary illumination on Mount Etna

and Mont Rosa respectively and f, f denote the light scattered by the

molecules of air per unit volume, Kelvin expressed his result in the form

:

N = -

2-50
1019 =

3-58
1019

.

'/(l-e)" /'(1-0
Lord Kelvin uses these equations by introducing estimated values

for e and e, and he concludes that the observations indicate the

* Baltimore Lecture
, p. 307 seq#
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probability that iV'is at least as large as 1020
. Our present knowledge

does not admit so high value, and if we introduce the figure 2*72 1019

already quoted, we see that e and / being fractions, Majorana’s results

on Mount Etna can only be reconciled with Lord Kelvin’s calculations

if e be practically zero and / nearly equal to unity. The measurements

on Mont Rosa are not reconcilable at all. Considering that Majorana’s

method of observation consisted in comparing directly light from the

sun with that reflected by different parts of the sky, it is perhaps sur-

prising that they yield a value of N which is so nearly correct
;
but as

regards the loss of light due to scattering, the method cannot compare

in accuracy with that employed by the American observers.

The theoretical result embodied in equation (18) is subject to

certain limitations which restrict its application to gases. This is

shown by the factor l)
2 in place of /x

2 — 1 ,
or (for solids) more

correctly still of (p
2 — 1)//* + 2 (see Article 1G6). The subject has been

discussed theoretically by Raman, and experimental investigations by

Lord Rayleigh* have yielded important results bearing on the subject.

If the laws of scattering as stated at the beginning of this article, were

strictly true, the light sent out in a direction at right angles to the

incident beam should be completely polarized in the plane containing

the incident and scattered ray. But the theory on which the conclusion

is founded assumes that the scattering particle is small, and has

symmetrical properties in all directions. This first assumption must
hold at any rate for gaseous body, but we have no independent reason

for believing that there is no asymmetrical element in a molecular

structure. The experimental test presents formidable difficulties

which have been overcome by Lord Rayleigh. If the incident light is

in a direction OX and the light scattered be examined in a direction

OY, the ratio of intensities of light vibrating along OX and OY
respectively was measured. This ratio should be zero if there is

absolute spherical symmetry. Eight gases were examined, and it was

found that in the case of Argon and Helium the fraction is small, but

exceeded 15% in the case of Nitrous oxide. According to equation (18)

the opacity should be proportional to % - l)
2
. This was tested by com-

paring the transparencies of a gas with that of air. The inverse ratio

of the two was found to be—within experimental errors—equal to the

squares of the refrangibility which is measured by /* - 1.

183. The pressure of light. A wave of light passing through
any substance sets up an electric disturbance within the molecule, the

effect of which, so far as scattering of energy is concerned, has been
discussed in the previous article. We now enquire whether any
electromagnetic forces are called into play by the mutual action of the

* Proc. Key. Soc. A, Vol. xcv. pp. 155, 476 ;
Vol. xcvii. p. 435 ; Vol. xcvm. p. 57.
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electromagnetic field of the radiation and the electric current in the

molecule. We take the incident light to be plane polarized and denote

the electric force in the direction of z by R : the corresponding magnetic

force acts in the direction of y,
and by (13) Art. 136, is fi

= — R/V. The
current in the molecule is e£ where we may take as the most general

form for £ that given by (36) Chapter xi. This gives for the current:

e

47T

'a —R \
s, dt a) dt 2

/

A d
-§t+ «BR).

The electromagnetic force acting on the molecule is equal to the

product of the current and magnetic force. The term which is

proportional to RdRjdt is periodic with an average value of zero, so

that the term in B only need be considered. This gives for the average

value of the force : ea>BR0
2/8irV where R0 is the maximum value of R0 .

If there are Ef molecules per unit volume we must multiply by N to

obtain the total force per unit volume. The factor B is intimately

connected with the coefficient of extinction R as shown by equation

(20) of the previous article, which gives for the force per unit

volume : kRofoir V‘\ or k times the energy per unit volume of the

incident beam. This force is in the direction of wave propagation, and

hence the result of the investigation is in full agreement with Maxwell’s

conclusion that light exerts a pressure equal to its energy per unit

volume. The agreement is proved by considering a layer of unit

surface and thickness dx. If the incident energy be E, the energy

leaving the layer is, by definition of k, E(1 — kdx). The diminution

of energy is kEdx and the diminution per unit volume is kE; there is

therefore an excess of pressure on the front of the layer which is k

times the total light pressure. The importance of the above investiga-

tion lies in its proving that the light pressure acts in the same way

when the body is gaseous as when it is solid or liquid, and that scattering

is equally effective to absorption.

184. Group Velocity. In investigating the mechanics of a wave

motion we are generally led to a Differential Equation and this is often

satisfied by what we have called a “homogeneous” train of waves. If

the velocity of propagation is then found to be independent of the

wave-length, the propagation of plane waves can always be represented

by an expression of the form fix ± vt), so that a wave of any shape is

propagated with a definite velocity without change of type. But this

happens only in the simplest cases. When the wave velocity depend^

on the frequency, the wave-length alters in shape as it proceeds.

Though the wave is not homogeneous in type, it can always be repre-

sented analytically as a superposition of homogeneous waves. As a
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simple case, take two such waves having slightly different lengths

and rates of propagation, their displacements being cos/(F£ — x) and

cos V ( V't — x), and their resultant

cos l ( Vt— x) + cos l' ( V't — x)

which is equal to

2 cos
IV-IV , V-l

] (I'V + IV I' + l
fj
— L nr\ cs J -hx\ cos

7
X ...(21 ).

The first factor passes through its period in a time 4tt\(JV' -IV)
while the periodic time of the second is 4^1(1' V' +

1

V). If l' —

l

and

V — V be sufficiently small, it takes many periods of the second

factor to produce an appreciable difference in the first factor. Hence

we may say that the resultant effect is that of a wave having a length

approximately equal to that of either train of waves, and an amplitude

which varies slowly. The velocity of the waves in this group is

(l'V' + lV)l(l' + l) or to the first approximation, equal to that which

corresponds to a wave-length 2ttJI. To find the velocity of the group

we must fix our mind on some special feature which may be chosen to

be the maximum amplitude. For £ = 0, this lies at the origin, and

generally the amplitude has its maximum whenever

(JV -IV) t-(l' -V)x = 0 (22 ).

The highest point of the wave travels forward therefore at a rate which

is (I'V -IV)/1' -l or, on the supposition of nearly equal values of l

and l’, we may write for the group velocity

TT=
dlV dVj\

U
dl ~ dl /A

= V , dV
dk (23),

showing the dependence of the group velocity on the variation of the

wave velocity with the wave-length.

The explanation of the propagation of groups was first given by

Stokes while Osborne Reynolds pointed out its connexion with the

propagation of energy. Equation (23) is due to Lord Rayleigh*.

Professor Lambt has given an instructive proof of this equation, in

which the group is identified, not by a difference in amplitude, but by

a difference in the distances between prominent points of the group. Let

the group consist ofwaves approximately of the simply periodic character

but with a gradual change in the distance from crest to crest. The

group velocity will be the velocity with which a particular distance

between two successive crests moves. The wave-length A. may here be

considered to be a function of x and of t. The rate of change of A at a

* Collected Paper*, Vol. i. p. 322, Sound, Vol. i. § 191 and Appendix,

t Proc . London Math . Soc Sec. n. Yol. i. p. 473 (1904).
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point which moves with velocity is by the rules of the differential

calculus ^ If the velocity of the point is equal to the group

velocity, then by the definition of U the wave-length is constant,

hence

TTdX . .

dt
+ U

dx
= 0

Now let the point move with velocity F, i.e. follow one crest. The

next crest will move with velocity F+A^ or F+A^.^, henceJ ox dX dx

X ~jr- . measures the rate at which the wave-length increases. This
dX dx &

gives

SX vdX_ dV ax

a#
+

dx 9A ’ dx *

By combining (24) and (25), we return to equation (23).

One word of caution may be necessary
;
when we speak of the

velocity of a group, we do not mean to imply that the whole of the

group moves forward without any alteration just as if it were a single

wave. The first variable factor of (21) always has its maximum value

when the condition (22) is satisfied, but the second factor continuously

changes and at intervals of time which are equal to half a period, this

factor is alternatively ± 1, so that the maximum amplitude after such

an interval is converted into a minimum. The essential point is, that

at periodically recurring intervals, the group regains its original feature,

and the distance through which the group has moved forward divided

by the interval is called the velocity of the group.

The following Table given by Rayleigh is interesting as giving the

relation between group and wave velocities in particular cases.

Fee A, 27— 0. Reynolds’ disconnected pendulums.

Foe A^, 27= ^ F Deep water gravity waves.

Foe A”, 27 = F. Aerial waves etc.

Fee A \ U- F. Capillary water waves.

F<x A-1
,

27= 2 F Flexural waves in elastic rods or plates.

The last two examples show that it is possible for the group to travel

more quickly than the individual wave.

When the law connecting F and A is F= a + bX. the group velocity

is independent of A and the variations in the shape of the group
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may in special cases be followed out in detail*. Fig 181 represents
the successive stages of a group, the shape of which is represented by
the equation

h2

y ~h2 + a?'

An interesting question arises in the case of the propagation of light

within an absorption band. As explained in Art. 157 the wave
velocity may increase with diminishing wave-length. In that case

let V0 and A0 represent the velocity and wave-length in vacuo, and

* Schuster, Boltzmann
,
Festschrift

,

p. 569.

22
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let d VjdX0 be negative,

with respect to F

or

As FA0 = F0A, we obtain by differentiation

\ , tr _ rr
Xo+ VdV" Vo dV’

\ Y1 V
VodV" V

dV’

As the second term on the left-hand side is negative, it follows

that A > A, which shows that the group velocity is in the opposite

direction to the wave velocity. If there is a convection of energy

forward, the waves must therefore move backwards. In all optical

media where the direction of the dispersion is reversed, there is a very

powerful absorption, so that only thicknesses of the absorbing medium
can be used which are smaller than a wave-length ofjight. Under
these circumstances it is doubtful how far the above results have

any application. But Professor Lamb* has devised mechanical ar-

rangements in which without absorption there is a negative wave

F

velocity. One curious result follows : the deviation of the wave on
entering such a medium is greater than the angle of incidence, so that

the wave normal is bent over to the other side of the normal as indicated

in Fig. 179. This is seen at once by considering that the traces on the

refracting surface of IFF and WrFu the incident and refracted wave-

fronts, must move together. If we were to draw the wave-front in the

usual way parallel to TF/F/ and the waves moved backwards in the

direction A’Q\ the intersection 0 of the refracted wave and surface

would move to the left, while the intersection of the incident wave

moved to the right. By drawing the refracted wave-front in the

direction WXFX the required condition can be secured. The individual

waves move in the direction AQi but the group moves in the direction

AQ% .

* Proceedings London Math. Soc . Sec. n. Vol. i. p. 473 (1904).



CHAPTER XIV.

FURTHER DISCUSSION OF THE NATURE OF LIGHT
AND ITS PROPAGATION.

185. Preliminary Remarks. Light enters into our conscious-

ness through the effects on our sensitive organs whose powers may be

increased by suitable experimental appliances. When we speak of the

“nature” of light we try to form some mental picture of what consti-

tutes light before it has entered our spectroscopes or other optical

instruments, and it becomes necessary therefore to examine what modi-

fications light undergoes in passing through such instruments. If—as

an example—we were to look upon a spectroscope as an appliance

capable of analysing white light, in the manner a chemist analyses a

compound body by separating the constituents it contains, we might be

led to believe that the highly homogeneous radiations which leave the

spectroscope have a real existence in the light that entered it. This

—as the late Lord Rayleigh pointed out—is an error : it is the spec-

troscope that converts the white light into homogeneous radiations.

Having satisfied ourselves with regard to instrumental effects, we have

to consider the ultimate receiving screen such as the retina or the

photographic plate. How much our judgment is affected by the

peculiarities of these receivers may be recognized if we try to imagine

how radically our impressions would be altered if our eyes were equally

sensitive to radiations of all kinds, so as to give us simply a measure

of their intensities*. What is true of instrumental analysis is equally

true of its mathematical treatment. The process of the treatment may
affect our conclusions.

186. Application of Fourier’s theorem. Gouy’s treatment.

This theorem gives us the most powerful mathematical method of

treating variable functions, that without necessarily being periodic

oscillate between finite limits. We begin by considering in greater

detail the series that has already been mentioned in Art. 10. We con-

sider a ray of plane polarized light and fix our attention on a point P
over which the disturbance passes. If the velocity at P be v, we may,

in the most general case, express it as a function of the time, f(t). Let

us follow the motion from a time t = 0, to a time t—T. According to

Fourier’s theorem, which has already been explained in Art. 10, we may
write

f(t) = a0 + ax cos (2irt/T) + a2 cos (int/T) + as cos ( 6-n-t/T)

+ bj sin (2irtjT) + b2 sin (Lr/T
7

) + b3 sin (6vtjT) (1).

Assuming that it is always possible to express v in terms of such a series,

we may easily determine the value of any coefficient as by multiplying

* Schuster, Phil. Mag. Vol. xxxvii. (1894).

22—2
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both sides by cos (2irstjT) and integrating between the limits 0 and T.

It will be found that on the right-hand side all integrals have the same

value at both limits except that one which has as for coefficient.

We find similarly any coefficient bs by multiplying both sides by

sin (2TrstjT) and integrating between the same limits.

We thus obtain
J7

J
(2),

and for the other coefficients,

a*
=
tJo ^^ C°S ^STrTIT) dr

bs - jT J / (r) sin (2sttt/T) dr

(3),

where the variable has been altered for convenience in future use from

t to r.

As a0 expresses the difference between the displacements of the point

P at times t = T and t = 0, we may, in the case of periodic motions,

by choosing the time T to be very large, make a0 as small as we like.

We shall therefore neglect this quantity. The remainder of the series

may then be written

v •= Vi + v-i + . . . vs + (4),

where vs = rs cos {(2 irstjT) + 0S} (5),

rs and 03 being two quantities which may be determined in the usual

way from as and b3 .

Each term of the series (1) is identical in its analytical expression

with what we have called a simple periodic motion giving rise to

a homogeneous wave, but we must bear in mind that the equation

only holds during a certain time interval, and that homogeneous light

necessarily implies an infinite succession of waves. Hence some care

is necessary in the application of the formula. We may however, as

we are at liberty to choose the time 1
1

as large as we like, express the

whole disturbance as being formed by the superposition of a number of

disturbances each of which may be made as nearly identical as we
please with homogeneous light.

In the analytical discussion of diffraction and refraction, we have

based our investigation on the treatment of homogeneous waves, and

where the light was not homogeneous, we have assumed that the total

effect as regards intensity, could be represented as being equal to the

sum of the separate effects of a large number of homogeneous vibrations.

This requires justification. Imagine the disturbance, which may be of

quite arbitrary type, to pass through any optical system and confine

the attention to that point of the system where the observations are

carried out. When T is very large, we may, except possibly near the

limits of time, treat each term of the series (1) as being due to a
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homogeneous wave. At the point considered, the velocity may be ex-

pressed as the sum of terms of the form (5), with altered values of r and 6.

Calculate now the average square of the velocity during the

interval T. The square of the right-hand side of (4) contains products

such as vnvs and hence the expression for the average value of v2,

contains terms of the form

/
C°S + cos {(2^/T) + 9„} dt.

n and a being integers, the integral is easily shown to be zero. The
remaining terms to be considered are of the form

rl
T f cos2 {(27mt/T) + 0a} dt = Jr/,

Jo

and hence for the average value of v2 we find J5r2
;
but this is exactly

the same expression we should have found, if we had treated each

component of the series (4) as an independent homogeneous vibration.

The intensity of the luminous disturbance at any time is proportional

to v2
,
and our proof of the independence of the separate vibrations as

regards energy only applies to the average energy extended over a very

long range of time. The relevancy of the proposition as regards light

depends on the fact that in our optical investigations we may treat the

sources of light to be constant, so that the average energy is

independent of the length of the time interval. This important

remark was first made by Gouy*, to whom the whole of the above

investigation is due. The simplification in the treatment of non-

homogeneous light which was first made at the end of Art. 20 now
finds its complete justification, and we are at liberty, whenever it is

convenient, to represent white light by superposing a number of

homogeneous vibrations having periods which lie very close together.

But we are equally at liberty to assume any other representation so

long as its resolution by Fourier’s theorem gives us a distribution of

intensity equal to that of the observed one. Gouy pointed out that

we can regard white light as being made up of a succession of perfectly

irregular impulses. The type of the impulse is quite arbitrary so long

as the conditions as regards distribution of intensity are satisfied.

187. Application of Fourier’s integral. Lord Rayleigh’s

investigations. Lord Rayleigh f had independently arrived at

conclusions similar to those of Gouy, and has more definitely investi-

gated the type of impulse, an aggregation of which may be considered

to constitute white light +.

* Journal de Physique, Vol. v. p. 354 (1886).

f Collected Works, Vol. m. p. 60.

t Collected Works, Yol. hi. p. 268.
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If we write (1) in the form

v = 2 {at cos (2-n-st/T) + bs sin (2-irst/T)},
«=o

and substitute the values of as and bs from (2) and (3), we obtain

/(0=f^{§/0 /(
T
) /(T) COS {2tt5 (t - t)jT]^ dr.

If now T is allowed to increase indefinitely, we may write w = 2ns/T

and for the increase of w in successive terms of the sum, do> — 2irjT.

The first term on the right-hand side vanishes. By substituting

integration for summation, we obtain Fourier’s theorem in the form

7r/00 = f f f(j) COS 0> (t — t)dr (6).
Jo Jo

This equation represents the way in which any given function /(#)
may be analysed into its homogeneous components The next step is

to find how much energy is to be ascribed to each small range of

periods defined by the values of o>. This is most easily done by means

of a theorem expressed by the following equation*’

if

f J'it') 4* (0 — f (AiA 2 + BXB^) do>,

Jo Jo

f
+ co r+ co

#

Ax= /(t) COS 0>Tdr

‘

} =1 /(t) Sin o>tdr,
Jo Jo

/
+

<*> /* + GO

<f>
(t) COS B2 — I 4> (r) sin wrdr.

0 Jo

If f(t) expresses a vector, the square of which is proportional to

r+co

the energy,
J

[/(OP dt may be taken as the measure of the total

energy of the disturbance, and by the above theorem,

'fV(op*=fV ,'+.B,)*> (7),
J -co J 0

where
f+a> r+co

. A =
/ /(f) cos WTdr ;

B= /(r)sincirrdr.
J —00 J —oo

It follows that (A 2 + B2
)/ir may be taken as the measure of the

energy in the range defined by d<a, the frequency being w)2tt.

As ail example, Lord Rayleigh takes a disturbance originating at

a point and having at any time a velocity given by

(8).

* Schuster, Phil. Mag., Vol. xxxvn. p. 509 (1894).
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This disturbance is very small when t is large on the negative or

positive side, and has a maximum for t = 0. In this case

A = f e~°2ta COS <jordr = e-uVict

J - OO C

B = I 6“^ sin iardr = 0.
J -00

Hence the energy included in the range between w and w + du> is

c -2^- w2/2c2^w>

This represents a distribution of intensity resembling to some
extent that observed in the case of the light emitted from black bodies.

The example is sufficient to show that it is possible to represent white

light as being due to the emission of a succession of disturbances, each
of which roughly resembles that represented by (8). The larger the

value of c, the more sudden will each disturbance be, approaching

ultimately to an impulsive motion.

188 . White light analysed by grating. It is interesting

to follow out the effect of a grating in modifying a disturbance

of any shape. For this purpose we must define the action of a
grating a little more closely. Let s be measured along the grating,

at right angles to its lines, and./ (s, t) be the displacement. The grating

modifies the disturbance in a periodic manner, and we obtain the

simplest kind of modification by assuming that the disturbance in the

reflected light is equal to cos qs.f(s, t), 2^/g measuring the distance

between the lines of the grating. An imaginary grating having this

property was made use of by Lord Rayleigh in his article on the wave
theory in the Encyclopaedia Britannica. It may conveniently be called

a simple grating, and it can be shown that all real gratings may be

represented by the superposition of a number of simple gratings.

It can be shown* that if a disturbance, originally coming from a

point, is spread over a plane wave-front at right angles to x with

a velocity determined by ifr(Vt-x) and falls on a simple grating, the

displacement in the reflected beam is determined by the equation

2*^(0 =^r j/cos qs>!>(Vt- ys) ds (9).

The displacement is measured at the focus of the lens collecting it

The other quantities which occur in the equation are defined as follows

:

h = height of grating; y = s (sin /8-sin a); a = angle of incidence;

ft
- direction of reflected beam

;
2/ = width of grating.

In Fig. 180 let the thick line represent the velocity of the

disturbance travelling in the positive direction, and the thin line

* Schuster, Phil . Mag. Vol. xxxvn. p. 509 (1894)
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the curve y = cos qx, drawn from the point x = 0 to the point

x = 2irN/q. Then if y be the ordinate of the thick curve, the

displacement of the focus of the telescope after reflexion from the

grating at a certain time, is seen by (9) to be proportional to

/yy dx. The displacement at all times is obtained by letting the

wave travel forward, the cosine curve remaining in the same position.

The formula (9) and the geometrical interpretation just given, bring

out clearly the analogy between the action of the grating and the

integration involved in the calculation of the coefficients in Fourier’s

series. I must refer to the original paper for a detailed discussion

of the application of the above equation, but the following two special

cases may help the student in clearing his ideas.

Case I. The incident beam is homogeneous. The light reflected

from the grating in any direction is then also homogeneous, and has

the same period as that of the original light. That is to say, whatever

the periodicity of the grating, it has no power to alter the periodicity

of the disturbance. The distribution of amplitude in different direc-

tions is the same as that which has already been obtained in the

Chapter on Gratings.

Case II. The incident disturbance consists of a single impulsive

velocity. The disturbance at the focus of the telescope consists then

of an impulsive displacement followed by a vibration represented by a

cosine curve, continuing for as many periods as there are lines in the

grating. The period is the same as that of the homogeneous vibration

which, having the wave-front parallel to that of the disturbance

considered, would have its principal maximum at the focus of the

telescope
;
that is to say, the periodicity in the reflected beam depends

now on the direction in which the telescope points.

189. White light analysed by dispersive media. The
mechanism by means of which a grating converts an impulsive motion

into a regular succession, with one predominant period, is easily

explained. The action of a prism is a little more difficult to under-

stand. Nevertheless, we know that a prism behaves in the same way
as a grating, and the method of its action suggests itself as soon as we
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consider that the separating power of the prism is due to the unequal

velocity of different wave-lengths through its substance. An impulsive

motion therefore, started in a dispersive medium, cannot remain an

impulsive motion, but the disturbance lengthens out as the wave

proceeds. Having again recourse to Fourier’s theorem, we may
analyse an impulse, and imagine it to be made up of a number of

different groups of waves of different lengths. These groups, according

to Art. 184, are propagated with different velocities so that a

separation of the different wave-lengths takes place, except in the

particular case considered in that article, in which the law of pro-

pagation is such that the group velocity is the same for all wave-

lengths. This being the simplest conceivable law, we may consider

the action of a prism made of a substance for which the group velocity

is constant. A plane impulsive motion reaching such a prism obliquely

is refracted, and we can draw a plane over which the disturbance

is spread in the prism in the ordinary way, by substituting the group

velocity for the wave velocity. The plane of the disturbance stands

therefore oblique to what, in ordinary refraction, would be the

wave-front, and the optical distance from the original wave to the

different points of the plane of disturbance is not the same.

It has also been pointed out that as the group proceeds, maxima
are periodically changed into minima, and vice versa. On the plane of

disturbance therefore the motion will not be everywhere in the same

direction, but will change alternately from one direction to the other.

If we now follow this plane of disturbance proceeding with the group

velocity as it is refracted out of the prism, we obtain another plane of

disturbance oblique again to what, under ordinary circumstances, would

be the wave-front. Its position would be the same as that of an

ordinary wave-front which has passed through the prism with the

group velocity. If the emergent wave be now received by a lens,

the disturbance at the focus of the lens consists of a periodic motion,

the different parts of the plane of the disturbance passing through the

focus at different times. The greater the resolving power of the prism,

the greater will be the number of inversions in the plane of disturbance

after it has left the prism and therefore the more will the light passing

through the focus of the lens be homogeneous. In this way we may
convince ourselves that the action of a prism is identical with that of a

grating. Although our reasoning is strictly correct only for a prism

composed of a material which has a definite law of dispersion, the result

must be the same in other cases, because, fixing our attention on a

certain narrow range of wave-lengths, we may always consider the

groups of waves within this range to proceed through the material with

constant velocity. We may therefore apply the above reasoning to

each such narrow range separately.
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190. Doppler’s Principle. If the spectra of stars are carefully

examined it is found that in many cases the absorption lines when

compared with the emission lines of chemical elements are slightly dis-

placed. This can be explained by the motion of the star in the line of

sight. If a star receding from the earth with velocity v emits or absorbs

light of period t0 , it will have moved through a distance vt0 while the

vibrating corpuscle is performing a complete oscillation. The light

reaching the earth has to pass through this additional distance, and V
being the velocity of light will take a time vt0/ V to do it. The period

as it appears to a terrestrial observer will therefore be

If the star moves towards the earth we must give a negative sign to v.

As the same reasoning can be applied to the motion of the earth to-

wards or away from the star, the displacements observed furnish a

measure of the relative velocity of star and earth in the line of sight.

191. Homogeneous Radiations. Radiations which exhibit a

high degree of homogeneity only appear when the radiating body is in

a gaseous state and must therefore be considered as emanating from

the individual atoms. It was first pointed out by Lippich* and subse-

quently by the late Lord Rayleighf that the dynamical theory of gases

combined with Doppler’s principle sets a limit to the homogeneity. A
molecule, which if stationary emits a radiation of frequency N, will, if

moving in the line of sight with velocity v relative to the observer,

appear to emit a radiation of frequency n where

n=N{l±v/V),
V being the velocity of light, the upper sign being taken if the molecule

recedes from the observer. If the molecules move with the same velocity

but indiscriminately in all directions, it may be shown that the radia-

tion received will cover uniformly a range of frequency between the

limits N (1 + vj F). The translatory velocity of the molecule being

small compared with the velocity of light the result will be that the

homogeneous radiation will only be slightly affected and appear as a

narrow band in the spectrum.

In a more detailed calculation Lord Rayleigh abandons the simpli-

fying assumption that all molecules move with the same velocity and

assumes Maxwell’s law of distribution. In order to conduct the investi-

gation so as to lead to results capable of being verified experimentally,

he calculates the distance at which the widening just prevents the

resolution of two closely adjacent similar lines, or, what comes to the

* Pogg. Ann. xxxvi. p. 466 (1889).

+ Collected Works, Vol. i. p. 183.
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same thing, the greatest difference in path at which interference between

two pencils of light is still observable. He finds that this difference in

path expressed in wave-lengths is 690 Vjv. Fabry and Perot* were able

in the case of the green mercury line still to observe interference with

a difference of path of 790000 wave-lengths. If the molecular velocity

is the sole cause of the widening of the lines we may use Lord Rayleigh’s

expression to calculate v which is then found to be equal to 16900.

Assuming thermal equilibrium this velocity corresponds to 376° 0. We
are ignorant of the effects of temperature in highly rarefied gases

rendered luminous by electric discharges, but the calculation tends to

show that in the case of metallic vapours giving nearly homogeneous

radiations, the widening of the bands, which sets a limit to their powers

of interference, must in great part, if not entirely, be ascribed to the

Doppler effect. No account is taken in the above reasoning of molecular

impact, which, in the example chosen, is not likely to have an appre-

ciable effect.

One further point should be noticed. In the case of white light it

has been shown that the homogeneous radiation which emerges from the

analysing spectroscope is an instrumental effect. It has no independent

existence prior to its entry into it. When on the contrary we can obtain

interference from a beam of light one part of which has been retarded

relatively to the other, the regularity must exist in the beam itself. No
theory of light can be said to be complete if it is inconsistent with the

almost perfect regularity of the homogeneous vibrations sent out by the

atoms, a regularity equalling that of a clock which keeps time within

a second in twenty days. As the light we receive is the combined effect

of a large number of luminous centres, there is little room for any varia-

tions in the fundamental constants which determine the period. As ex-

pressed by Clerk Maxwell : “Each molecule therefore, throughout the

universe, bears impressed on it the stamp of a metric system as distinctly

as does the metre of the Archives at Paris, or the double royal cubit of

the temple at Karnac.”

192. Series Spectra. Results of fundamental importance bearing

on the mechanism of radiation have been derived from the study of the

regularities observed in the frequencies of the quasi-homogeneous light

emitted by gaseous atoms. These will be described in the concluding

Chapters of this treatise, and we shall confine ourselves here to a short

account of the principal experimental facts on which the more recent

theoretical investigations are based. We shall identify homogeneous
radiation by its wave-number (n) which represents the number of waves

per unit length so that nX - 1.

C.B. Vol. cxxvin. p. 1223 (1899).
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Applying the connexion between the wave-length A and the frequency

f we can also write n = V~ xf where V is the velocity of light. A con-

siderable number of elements—more especially in the spectra of flames

or weak spark discharges—shew certain groups of lines which together

form a series in which the lines lie nearer and nearer together as we
pass from the red to the violet. The typical case is that of the ordinary

spectrum of hydrogen for which

n. = N

N is a constant equal to 109678 and m an integer number having for

successive lines the values 3, 4, etc. It will be seen that the number of

lines is infinite and that as m increases they approach a definite limit

n = which may be called the convergence number. Thirty-four lines

of this series have been identified, the first, for which m = 3, giving

\ = n~' = 6562 ’8 which is the well-known red line of hydrogen. The

series was first given in a different form by Balmer and is always con-

nected with his name. Three series presenting certain characteristics

are generally associated together. These were in many cases discovered

and studied by Kayser and Runge who represented the wave-numbers

by a series having three constants

:

W'm
G_

mP
where m again is a number which takes all integer values. The series

now generally adopted, which was first used by Rydberg in his important

contributions to the subject, has the form

:

nm ~A
(m + rf'

The constants here are A, N and n, but as the value ofN is found to

have nearly equal values for different elements, Rydberg treats it as a

universal constant, sacrificing to some extent the accuracy of the agree-

ment between the formula and the observed wave-numbers in favour of

simplicity of expression.

The three series which as stated are generally associated may be

written conveniently:

P (m)-P cc- ]Y/(ni + P)
2
, m= 1

,
2 , 3 ....

S (m) = S co — Nf(m + &)
2
, m = 2, 3, 4 . . .

.

D (m) = l) co — Nj(m +D)
2
, m — 2, 3, 4

The symbol oo indicates that the wave-number P(m) applies to the

case m — co so thatP oo
,
S <x>

,
D <x> represent the convergence numbers..

The first series is called the Principal Series, the second consisting of

slightly broadened lines is called the Diffuse Series, the third is known

as the Sharp Series. The general appearance of the distribution of lines
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in the three series is illustrated in Fig. 181 in which the wave-numbers

increase from right to left. The figure shows that the Diffuse and Sharp

Series converge to the same point. This is a property which holds

Fig. 181.

generally and we may express it by writing S co= D oo

.

It is also found

that the difference between the convergence number of the principal

series and the common limit of the S and D series is very nearly equal

to the wave-number of the principal series.

This law may be expressed by

Poo-£ao = Poo-2\7(l +Pft

or Sx> = N(l +P)2
.

With a less degree of accuracy, Rydberg puts

P*> = N(l+S)\

Using this value for the convergence numbers, he adopted the following

symmetrical expressions for the three series

:

P (m) =
(i + sy

N
(m + P)2 ’

(T+P)3 (m + S)2 ’

w (1+P)2 (>+P)2
‘

These formulae are in general only approximate, but as we shall show

subsequently they have a theoretical significance. The above account

is mainly derived from Professor Fowler’s Report on “Series in Line

Spectra” to which the reader is referred for the numerical data and

other details.

193. Infrared and Ultraviolet Radiations. The science of

Optics taken in its literal sense should deal only with those radiations

'which affect our eyes. This would confine it to a narrow range extending

over less than an octave and the limitation would be entirely unscientific

as it would introduce an arbitrary physiological element. The true
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measure of the electromagnetic radiations, to some of which our eyes

are sensitive, is their intensity measured by their thermal effects. For

the sake of logical sequence we must risk a philological inexactitude and

include in the theory of Optics all such radiations as have a molecular

or atomic origin. From an experimental point of view the chemical

effects which manifest themselves by their photographic action give us

the widest range, covering at least a million octaves. The common
nomenclature based on ocular observations conveniently divides the

entire range into three parts, of which the so-called infrared, including

wave-lengths longer than the visible ones, and the so-called ultraviolet,

covering wave-lengths shorter than the visible ones, lie at the two sides

of the region which directly affects our eyes. In the infrared Abney has

obtained photographic effects as far as 27000 A though the exact figure

is doubtful, as the wave-length was determined by extrapolation. The
observations of Rubens and his collaborators reaching as far as *006 cm.,

i.e. 6 x 10® A, have been referred to in Art. 153. In the ultraviolet,
o

which may be said to begin at 3990 A, we cannot go far beyond the

visible part with glass prisms and lenses owing to their want of trans-

parency. Quartz takes us a good step further, and Stokes with the help

of a fluorescent screen was able to extend the observations to 1850 A.

Unless gratings are employed we are then obliged to use fluorspar as the

refracting medium. But here another difficulty presents itself, for the air

through which the radiations pass becomes strongly absorbent and the

observations must be carried out in an atmosphere of hydrogen or in

vacuo. V. Schumann to whom we owe the extension of our spectroscopic

method in this direction was able to observe wave-lengths which he

estimated to be about 1 000 A.

Ordinary photographic plates cannot be used in these experiments

because the gelatine absorbs the light and prevents it from acting on

the silver salts, and it required considerable experimental skill to devise

a method for preparing sensitive films without the introduction of an

absorbent medium. A considerable step in advance was made by

Lyman* who substituted gratings for the prisms. Wave-lengths could

then be determined with accuracy, and the spectra of a number of sub-

stances were mapped. More recently still Millikan f made further pro-

gress chiefly with the help of a specially constructed grating with

suitable ruling. He could identify lines of nickel having a wave-length

of 202 A.

It is now generally accepted that the X-ray radiation discovered by

Roentgen consists of ultraviolet waves. Some difficulty was felt at first

in accepting this explanation because the radiation traversed substances

without being refracted. This is, however, a direct consequence of

* Astrophysical Journal , Yol. xix. p. 263 (1904).

t Ibid. Yol. lii. p. 47 (1920).
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Sellmeyer’s equation*, if the period be short compared with that of the

free vibrations of the atoms.

Gradually evidence accumulated that the Roentgen rays were

electromagnetic waves distinguished from ordinary light only by short

wave-lengths. In a series of important investigations, summarized in

his Bakerian Lecture!, Barkla proved that the rays could be polarized

by scattering, and showed that the experimental facts he had obtained

were inexplicable except on the transverse wave theory. Attempts were

made by Haga and Wind to determine the wave-lengths by tracing the

spreading out of a pencil of rays after passage through a narrow slit.

They estimated the order of magnitude to be 10-8 cm. which subse-

quently proved to be correct, but the experiments were open to criticism

and not generally accepted. Real progress was only made when, on

Laue’s j suggestion that the regular spacing of atoms in crystals might

serve to act as a three dimensional grating, Friedrich and Knipping,

working in conjunction with Laue, proved the feasibility of the proposal.

Their results were discussed and explained by W. L. Bragg § and accurate

experimental methods for more exact investigations were introduced by

W. H. and W. L. Bragg ||. We cannot enter here into the important

bearing of these researches on the theory of atomic structure in crystals.

It must suffice to mention that the wave-lengths of the characteristic

radiations of platinum, nickel and tungsten were found to have wave-

lengths of 110, 1'66, and 1*25 10_8 cm. respectively. The measurements

were subsequently extended to other elements by Moseley, who intro-

duced a photographic method. The subject will be further referred to

in Chapter XV.

194. The aberration of Light. Bradley who subsequently be-

came Astronomer Royal discovered in the year 1726 that fixed stars

describe in the course of a year elliptic curves,

and he was able to explain this as being due to

the earth’s motion. The explanation is simple

if we adopt the corpuscular theory of light.

Consider a screen AB (Fig. 182) with a narrow

aperture at 0, and a similar screen PQ with a

corresponding aperture at C. If a particle pro-

jected from the star moves in the direction 00,
C 'T) *

9

.

v it should, after passing through 0, ultimately
Fig. 182. pass through C. But if during the passage from

0 to C the earth moves in the direction PQ the path of the particle

* Nature, Vol. ltii. p. 268 (1896).

f Phil. Trans. (A) Vol. ccxvii. p. 315 (1917).

X Drude’s Annalen, Vol. xli. p. 971 (1913).

§ Proc. Cam. Phil. Soc. Vol. xvii. p. 43 (1912).

||
Proc. Roy. Soc. (A), Vol. lxxxviii. p. 428 (1913).
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relative to the earth will be along some line OC' slightly inclined to

OC, so that the screen PQ would have to be shifted to the left through

the distance CC' in order that the light be visible to an .eye placed

behind the aperture. The apparent line of sight is therefore OC and
its angular displacement is measured by vj V, if v be the component of

the earth’s motion which is perpendicular to the line of sight and V
the velocity of light. A similar argument holds good in the undulatory

theory. Let AB now represent the lens of a telescope. A wave-front

after passing through the lens will be a sphere having C as centre where

C must be considered to be fixed in space. But by the time the wave-

front reaches the focal plane some other point C moving with the earth

will be in the position previously occupied by C, so that the apparent

line of sight will, as before, be C'O.

195. Passage of light through moving bodies. There is one

formidable difficulty which the undulatory theory of light with its

doctrine of an sether permeating all bodies has to contend with. Is this

aether fixed in space and unaffected by rapidly moving matter passing

through it? It is natural that this question should have been raised

at an early stage when the theory still stood on its trial. The explana-

tion of the aberration of light given in the preceding article involves

the assumption of a stationary sether, but if this sether partakes of the

properties of ordinary solids and liquids it is difficult to believe that

huge bodies such as the earth can sweep through it without carrying

it partly or wholly along with them. Our theory of the aberration of

light then fails, and on the basis of what has been called “classical

dynamics” no satisfactory alternative seems possible. From the ex-

perimental side Arago was the first to make an attempt at attacking

the problem. He observed the position of a star, the light passing

through an achromatized prism before it entered the telescope. His

object was to ascertain whether the deviation caused by the prism

depended on the motion of the earth relative to the star. The

result was negative, as Mascart later pointed out it should have

been in any case, but it led Fresnel to consider the question of the

passage of light through moving bodies. He formed the hypothesis

that the sether inside a moving body is only carried with the body in

so far as the latter affects its properties
;
and this led him to the con-

clusion that if u be the velocity of the body, the sether included in it

moves with a velocity u (/A — l)//x
2
. This was one of several examples,

where clear insight amounting to genius enabled Fresnel to grasp the

essential leatures of a problem and obtain results that were experi-

mentally correct though based on weak foundations. A celebrated

experiment by Fizeau in 1851 confirmed Fresnel’s formula. In this

experiment a beam of light was sent through two parallel tubes in
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which water was kept flowing in opposite directions. The two parts

of the beam were brought to interference and the change of refractive

index caused by the motion could thus be measured. The experiment

was confirmed by Michelson, but we give it now a different interpreta-

tion. The difference . between a wave-velocity in a material body and

that in vacuo is, as explained in Art. 150, not due to any alterations

in the properties of the aether, but to an effect of the electric oscillations

on the molecules of matter. Our equations assumed that matter to be

stationary, and when appropriate changes are made in the equations so

as to introduce an additional term due to its velocity, Lorentz has shown

that Fresnel’s results hold good. So far as Fizeau’s experiments have

any bearing on the subject they seem to confirm the hypothesis of

a stationary aether.

196. The Michelson-Morley experiment. The experiment

of Fizeau referred to in the previous article was limited in its applica-

tion by the velocities which can be imparted to the flow of a liquid in

tubes. The relation between the aether and bodies moving through it

with planetary velocities involves questions of a different order. The

experimental difficulties are increased accordingly, but Michelson con-

ceived the idea that it would be possible to obtain, by means of his

interferometer, some indication of the effects of the earth’s velocity in

space. After a preliminary series of measurements Morley joined him

in the research, which has led to results of far-reaching importance.

Let the velocity u of an observer be in the direction SQ (Fig. 183),

along which we also suppose a beam of light to be propagated. The

velocity of light being c, its relative velocity to

the observer is c + u according as he moves with

or against the light. If after reaching Q the

light is reflected back to S, the total time occu-

pied in the forward and return journey is

:

\c + u (c - u)J c - w

If u be small compared with c, we may, neglecting powers of ujc higher

than the third, write more conveniently:

Ti - 2Lc~ 1 (l + (ujc'f).

'Owing to the velocity u the optical length has therefore to be increased

by 2 Ltfijc1.

If the motion be at right angles to SQ the time occupied in the

journey cannot be determined in quite so simple a manner. In Michel-

son’s experiment, a parallel beam of light falls on a mirror Mx

(Fig. 184) inclined at an angle of 45° and we must trace the path of the

23

Q

Fig. 183.

S.
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reflected light if the whole apparatus moves in the direction of the in-

cident light. As each of the wave-fronts such as AB moves forward

it will intersect thh mirror at successive points between M2 and Mx

(Fig. 184), and by the time the wave would—if the mirror were at rest—

A.

have reachedMx that point has moved forward to some point P, and the

wave is therefore reflected as if the mirror occupied the position M2P.

There is here an apparent violation of the law of reflexion, the reflected

beam being turned through an additional small angle MXM2P which

we proceed to calculate. Let A' be a point such that A'M2 is parallel,

and A'MX at right angles to the incident wave-front. Put A'

M

x = a,

MXP = e, and A'M2 = b, while 0 stands for the angle A'M2P. We have

to find the increment of the angle 9 when a increases to a + e, the

ratio of e to a being equal to u/(c- u). If « he the required angular

increment we have a = b tan 6 and hence

:

or

e = 8a = 86 (tan 6) = be/cos2 9

c = eb~ 1 cos2 6 = u sin 6 cos 9/(c — u).

The beam of light being turned through twice the angle through which
the mirror is rotated, it follows that when the angle of incidence is 45°

the angle between the incident and reflected rays is increased by a

quantity which to the first order of magnitude is equal to u/c. Let us

return to Michelson’s arrangement of mirrors, where S is the luminous
point sending parallel rays in the direction Sa, and this is the direction

in which we imagine the earth to be moving. The waves fall on the

mirror a inclined at an angle of

45° (Fig. 185) and we must
trace the rays as they travel

referred to a system of co-

ordinates fixed in space. The 1

reflected ray ab is now turned

through an angle greater by
^ u/c than a right angle. As the

mirror b travels parallel to it-

self, it reflects the light as if it were stationary and on its return the



196J THE NATURE OF LIGHT AND ITS PROPAGATION 347

ray will intersect the line Sc at some point ax . The total distance

travelled, abalt is easily found by geometry to be

2L (1 + u2
j2c

2
).

The time taken by the light during the passage is c
_1
L. The angle

between ab and axb being 2 ujc, the distance aal is 2c^uL. In con-

sequence of its velocity u, the mirror therefore travels from a to a1 in a

time equal to that which it takes the reflected light to travel along the

path abax . The ray reflected by the mirror c returning to ax will be

reflected in the direction ba, and therefore overlap the ray returning

from b.

We have now to determine the effect of the earth’s motion, supposed

to be in the direction Sc on the optical lengths which determines the

position of the interference rings. We have found above that there is

an increase in optical length in the forward and return path between

these mirrors equal to 2Lw^jc1 and an increase of half that amount in

the path from a to b and back to the same mirror. The difference in

the optical lengths which is effective in altering the position of the

interference rings is therefore Lm2
/c

2
, the light reflected from c having

the longer path. For the purpose of the experiment the apparatus is

mounted so that it can turn round a vertical axis, and if it be so turned

through a right angle it will be the light reflected from b that now has

the longer path. If the aether be stationary there should therefore be

a shift of the interference bands corresponding to a difference of optical

length amounting to 2Lifjc-, when the apparatus is rotated through a

right angle.

No account is taken in the above reasoning of the velocity of the

solar system in stellar space. Any effect of such a velocity would shew

itself if the experiments were repeated at different seasons of the year.

We must next enquire into the order of magnitude of the expected

effect. The direction of the earth’s motion round the sun is towards

a point of the ecliptic and at an angle of 90° westward of the sun, if we
assume for the sake of simplicity that the earth’s orbit is a circle. It

will therefore have its full value u when that point is on the horizon,

which takes place about noon, varying to some extent with the seasons

of the year. As the ratio u2
/c

2
is about 10~ 8

it follows that when the

expected difference of optical paths is equal to the tenth of a wave-

length of sodium light 2L x 10~ 8 = 6 x 10~ 6 or that the distance L must

be not less than 3 metres. Michelson carried out some experiments in

1881, the distance L being 1*2 metres. No displacement could be

observed, but the result was not decisive as the expected shift only

amounted to ’04 of the distance between two fringes. The experiments

were repeated with improved apparatus by Michelson and Morley*.

* Phil. Mag. Yol. xxiv. p. 449 (1887).

23—2
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To secure steadiness during the rotation the apparatus was mounted
on a massive stone floating in mercury and the length of the path L
was increased to 11 metres with the help of suitably disposed auxiliary

mirrors, which reflected the light backward. The expected displace-

ment was 0'4 of a fringe, and the twentieth part of this could not have

e caped detection. Nevertheless no displacement depending on the

orientation of the apparatus could be observed. There seems at first

sight no escape from the conclusion that the tether at the surface of

the earth partakes in the planetary velocity of the earth, a conclusion

which however leads to great difficulties in other directions. It became
necessary therefore to examine whether the apparently obvious inter-

pretation of the experiment did not contain some hidden assumption

which destroyed its validity as a crucial test. On examining critically

the process of the experiment we find indeed ^hch an assumption which

at the time seemed not only justified but axiomatic. The measurement

consists in comparing the optical length of two distances one of which

lit s in the direction of the earth’s planetary velocity and the other at

right angles to it. The result depends on the shifting of the inter-

ference rings when the apparatus is turned through a right angle. The
assumption tacitly made is, that the relative lengths are unaltered

during the change in the orientation of the apparatus. In other words

it is assumed that a measuring rod has the same length whether it lies

in the direction of the earth’s velocity or at right angles to it. The
discussion of this question which affects our fundamental conceptions

of space and time is outside the limits of this treatise. As a matter of

history it has led to what is now known as the Principle of Relativity.



CHAPTER XV.

EMISSION SPECTRA AND THE QUANTUM THEORY.

197. Atomic angular momentum. The theoretical interpreta-

tion of emission spectra, and the redaction of their phenomena to a

systematic order, have progressed very rapidly in recent years, since

the application of the principles of the Quantum theory to the types of

model atoms to which we have been led by the study of other branches

of Physics. We shall, in the succeeding chapters, discuss only those

aspects of the Quantum theory which are most germane to the study

of Optics. For further information than can he given in the brief sketch

which we contemplate the reader may be referred to such works as

those of Jeans*, Sommerfeldf, and Bohr J.

It is convenient, at the outset, to give a short summary of Bohr’s

original theory of the Hydrogen spectrum. Nicholson§, in a study of

the lines of unknown origin in the spectrum of the solar corona, found it

possible to ascribe them to a set of states of atoms of simple electrical

constitution, in which the states were fixed by the fact that the angular

momentum in an atom could only have discrete values. He pointed

out that this was, in effect, an introduction of Planck’s quantum of

action h
,
into the mechanics of the atom, in the only manner in which

it appears naturally to be relevant. For “action” is a product of energy

and time, with the physical dimensions ML?IT which are also the

dimensions of angular momentum. These states, now known in Bohr’s

theory as “ Stationary states,” in fact appeared to be determined by the

quantum h
,
for their angular momenta were simple multiples of it, in

linear order.

The spectra mentioned are not, as is at present believed, emission

spectra in the ordinary sense, capable of arrangement in the types of

series we have already reviewed, but are of the nature of “resonance

spectra.” The fundamental line given by any such state has a wave
length 2n-(7/a>, where C is the velocity of light, and w is the angular

* Report on Radiation and the Quantum Theory
,
Phys. Soc. Lond. 1914.

t Ann . der Physik
,

li. pp. 1—94 (1916), pp. 125—167 (1916); Atombau und
Spektrallinien

,
Leipzig (1919).

I Phil. Mag. xxvi. pp. 1—25 (1913), pp. 476—502 (1913), and other works.

§ Monthly Notices of R.A.S. 1910 et seq .



350 THE THEORY OF OPTICS [CHAP. XV

velocity of the electrons, moving in a path presumed to be circular.

We can at once find the curious law which such spectra follow. For if

n electrons, Ex ...En ,
equally spaced and

each of charge — e and mass m, rotate in

a circle of radius r about a fixed nucleus

+ ve of positive electricity, placed at C,

Fig. 186, the dynamical equation for any

one of them is easily found to be

ma^ = i (
v “ i#.)*

(Ju

VI —

\

where Sn = 2 cosec—

.

T=1 Wt

Here m is the mass of an electron,

and the total force on the electron has been resolved along the radius

vector. ^
No other dynamical equation applies to the orbit, so that a, the

radius, and w, the angular velocity, can be found separately. This fact

constitutes the difficulty emphasised by Lord Rayleigh, in regard to

the construction of a theory of spectra. Until the advent of the Quan-

tum theory of Planck, with its introduction of a new universal constant

of nature having necessarily some atomic significance in its ultimate

interpretation, there was nothing to indicate where to look for a second

relation between a and w. Nicholson’s view, that h was essentially an

angular momentum, allows us to write w?.a
2w as some multiple of h, say

md2m — Thj'2Tr.

Then with the preceding equation,

8 it
3mei (v - ISnf

(I) = r -

, T* /27T2 W2e
4

a A = =
2 (v-itfjy Wc ‘

With the values

e = 4-774. HU 10
,

^ = 6-545. 10"27
, efm = 1-767. 107

,

which involve the best recent determinations by Millikan, we find

t3 = 2X (v - IS*)* x 1-097 . 105
,

where 1'097 is in fact a simple sub-multiple of the Rydberg constant

N= 109679

of all series spectra.

The effect of this view is to give a simple set of spectrum lines in

which X oc t3
,
corresponding to the stationary states of any specific

atomic structure with a definite nucleus ve and a definite number n of
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electrons. In other words, series should exist in which, as t increases

by equal steps, A^ forms a set of terms in an arithmetical progression.

Such series have not been found in terrestrial elements, but perhaps

because the conditions suitable for their production are not realized

readily. But the spectrum of the corona contains many such arrange-

ments involving practically all the lines (about 35 in number). We give

one interesting example. The lines of wave-lengths 5303 '3, 4359,
o

3534’5 A.U., appeared to form such a series, for their cube roots are

A = 5303*3, = 17 '439
1104

A = 4359, A^ = 16*335

A = 3534-5, A* = 15*233
1 102

The mean difference in cube root is 0'1103, and the next member

towards the red is

A® = 18*542, A = 6374-8.

Some time after the discovery of these relations, a strong line at

A6374"6 was discovered by Deslandres and Carrasco, in an eclipse

expedition—a striking verification in a region of the coronal spectrum

otherwise practically empty.

As to the origin of these lines, we have stated already that they

probably belong to resonance spectra, being caused by the small vibra-

tions—some of which the theory of Bohr allows—of a stationary state.

They can only become perceptible on a photographic plate if the states

persist as such for a long period, while the atoms are actually excited

and not ionized, or if the light under examination comes from an

enormous thickness of gaseous material. The realization of these con-

ditions in the laboratory would be very difficult. The energy emitted

in these radiations is not, as in the theory of emission spectra, the

intra-atomic energy of the atom, but is derived from external sources,

such as the ordinary solar radiation into the corona, taken up and

emitted with these periodicities while the atom is seeking to return to

its stationary state. In this sense the word resonance is used. The
atoms are not in the usual condition which the quantum theory de-

veloped later appears to indicate, in that the orbits there are rarely

circular. But these resonance frequencies may yet persist with to as a

mean angular velocity.

198. Bohr’s theory and the spectrum of Hydrogen. We
proceed to describe Bohr’s theory as it was originally presented for the

spectra of Hydrogen and of charged Helium. The theory is designed

to account for a real emission spectrum, in which the energy of the

emitted waves is definitely atomic before its emission, and a necessary

adjunct of the stationary state immediately preceding the emission.
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Bohr’s first paper was published* shortly after the work described in

the preceding section, and it adopted the hypothesis of a set of con-

figurations for a given atom, and their specification in terms (if angular

momentum of electrons, but laid down the definite criterion that the

angular momentum of every electron in every atom is rhj'2ir, where r is

an integer—a suggestion now known to have restricted validity. The

orbits in the simple problem of Hydrogen—regarded as a single electron

and a single nucleus of charge + e—and of positively charged Helium

—regarded as an electron and a nucleus of charge + 2e—were taken as

circular.

If we consider an electron and a nucleus ve, of masses m, M respec-

tively, the former being about 1/1835 of the latter, their orbital motion

g consists of rotations about the common
• • —* centre of gravity 0, Fig. 187, and the line

Fig. 187. joining them passes through 0 continually

while each describes a circle.

We have A 0 1

Ml
AB, BO =-

M
AB.

^M+ m
‘ ^ ^ m +M

The equation of circular motion for the electron is

and for the nucleus

m . OB . or =

M. OA . w2 =

ve

AB**

ve2,

AB2
'

These are identical, and if AB = r,

ve
.( 1 ).mrs or

2 = + M)

The angular momentum of the system is

(m.OB' + M . OA 2

)
o>.

If the angular momentum is always a multiple of a definite quantum

we may write tA/27t for it, where t is an integer and h a constant. By
reduction

:

sW") wfflrw —

Combining (1) and (2) we find

0)

%Tf'mdi v
2 M

r =

hs
t3

AV

and or = -

4ir2me2
v

2TTve2

Af+m’
M + m
~~W *

rh

* loc. cit.
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The kinetic energy is

\ (m . OB2 +M . OA 2

)
w2 =\mM(m +M)~ 1wV2

,

which takes the value
2ir2mei

v
2 M

Ft2 • M+m -

It is a general property of systems of electrical charges in steady

motion under the inverse square law, that the potential energy is less

than its value in a state of infinite dispersion by an amount equal to

twice the kinetic energy. It follows that the energy which must be

given to an atom to disperse it completely into its electrons and nucleus

is equal to its kinetic energy. In the present instance, the potential

energy is

ve
2

_ ~ 4:Tr
2me4

v2

^2tT~
M

'm + M'
or C- 2W, where 0 is the potential energy in infinite dispersion, and

W is the kinetic energy. Thus the variable part of the total energy is

W, where

jjt 2ir
2mei M „

AV M+m ’

and the energy lost in passage between two states and r2 ,
where r2

represents the final state, and t2 < tj
,
is

Wx
- fV2 =

2Tr2mei M
h2 ‘M+m

Bohr regards this energy as being emitted in the form of a light pulse,

connected with the frequency/by the quantum relation

Wx-W2 =hf.

In other words, the light pulse constitutes one quantum of emission.

The frequency is therefore

f-
2ir

2mei
v2 M

h3 ‘M+m
G

The corresponding wave-length shown in the spectrum is

and the “wave-number ” n, or number of complete waves contained in a

length of one centimetre, is

„ = 10
8

= 0s 2/W/ M / 1 _ J_\
X ‘ Ck3 M+ m Vr? t2

2/
Since tx and r2 may take any integer values, it being presumed that the

electron may change over from any stationary orbit to any other, this

formula is already in qualitative agreement with the Balmer formula

for Hydrogen (Art. 197), which is given exactly by

»= 109678-3
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But the agreement is in fact quantitative. If we neglect m/M,
known to be of order 10-3

,
and write v = 1

,
the Rydberg constant, whose

actual value is 109678'3, should be given by

N = 108
.

27T2me*

~cw~ •

This is found by calculation to be correct, with the accepted values

of e, m, h, to one part in 1000, and therefore within the limit of experi-

mental error for these magnitudes. The success of the theory is therefore

very striking at the outset. The main Hydrogen series is the Balmer

series, with ^ = 2, t2 = 3, 4, 5, .... This represents the falling in of the

electron from various orbits to its “ second ” orbit characterized by
angular momentum hjir.

If the electron falls into its “third” orbit, t2 = 3, and the series

n ~
)

is developed. This jis known usually as the Ritz series, and lies in the

infra-red. The third known series is that of Lyman, in the ultraviolet,

practically at the limit in which observations are possible bjr existing

methods. This corresponds to falls of the electron into its “normal” or

first orbit Tj = 1.

For a fall to t
x = 4, we obtain a series yet further into the infra-red,

which is beyond the possibility of observation at present.

The entire visible spectrum of the Hydrogen atom, when neutral

electrically, is, by the present theory, contained in these sets of series,

and all other lines of Hydrogen,

—

i.e. the whole “secondary” or “com-

pound-line ” spectrum, must be ascribed to other systems, such as the

charged atom or the neutral or charged molecule.

199. The spectrum of ionized Helium. Helium is now
regarded as the next element after Hydrogen, in order of atomic

simplicity. Its ordinary state involves an atomic structure consisting

of a nucleus + 2e of positive electricity—if complex, yet so confined

as to act effectively like a point charge—and two electrons describing

orbits round it. In its ionized condition, it has completely lost one

electron, and the other was regarded by Bohr as moving in one of a set

of possible circular orbits, as defined in the preceding section.

For its spectrum, we merely write v-2, and the resulting wave-

number should be

” = 'y'{(WW2?}’

where N' is again Rydberg’s constant, though modified slightly.
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For if AT is the value for Hydrogen, we clearly have

N' _ M1 + m M,

N M\ ' M2 + m ’

where Mx ,
M2 are the masses respectively of a Hydrogen and of a

Helium nucleus—effectively the masses of the atoms, so thatM2jMx
= 4,

the atomic weight of Helium.

By this formula, the theory can interpret some spectrum lines which

had previously led to much controversy. Originally these lines were

discovered by Pickering in the spectrum of the star £ Puppis, and sub-

sequently in other stars and the nebulee. They were believed to be

due to Hydrogen, on account of the simple relations between the

formulae, and were classified by Rydberg as the “sharp” and principal

series of Hydrogen. The most important line was given by

o

with r2 — 2, and the calculated wave-length 4688 A. was believed to

agree with observation. Its wave-length is now known accurately as

4685*81 A. The second member of the series, t2 - 3, has wave-length

2734 A. below the limit of observation of stellar spectra, whose radia-

tions are absorbed in this region by the terrestrial atmosphere. The

other known lines were the “ Pickering series,” believed to follow the

form

with wave-lengths 5412, 4541, 4200, ....

Clearly both these series are included, at least very closely, in the

general formula we have developed for ionized Helium, but we notice

that this general formula indicates the existence between any two

consecutive lines of these latter series, of another member of the set,

those which occur between the members of the last set being approxi-

mately coincident with the Balmer lines of Hydrogen. These lines,

still believed to be due to Hydrogen, were ultimately obtained with

sharp definition by Fowler, from a tube containing. Helium and only

a trace of Hydrogen. The line A. 4686 had previously been noticed by

Lockyer and others, but never really identified as regards its origin.

The conditions of production of the spectrum are now well known.

Fowler found a new strong line at A 3203, and both this and A 4686

appeared to form the first members of series. Fowler showed subse-

quently that the actual series formula which they really fitted is

n = 4 x 109723-22
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with the observed members, in International Angstrom units in air

:

t2 A

4 4685-81

5 3203-16

6 2733-34

7 2511-25

t2 A

8 2385-46

9 2306-18

10 225272

The degree of fit is effectively absolute, and the lines cannot be regarded

as forming two interlacing series, even from the point of view. of their

gradation of experimental intensity. They can now be obtained in

pure Helium.

The corresponding Pickering series was also shown by Fowler to be

n = 4 x 109723-22 (4 - A ,

\42 m2
J

and seventeen members have been observed. The first six are

:

t2 A

5 10123-72

6 6560-16

7 5411-57

t2 A

8 4859-36

9 4541-63

10 4338*71

The alternate members t2 = 6, 8, 10, ... lie between the lines observed

by Pickering, and coincide more and more closely with the Balmer

lines of Hydrogen, AA6562"79, 4861*33, 4340"47, ... in International

Angstrom units. They cannot be derived from Hydrogen, and only

admit, with the whole set, the formula quoted.

The theory predicted also the appearance of an ultraviolet series

m = 4x 109723-22

of which four members, AA 1640*49, 1215*18, 1084*98, 921*39, corre-

sponding to t2 = 3, 4, 5, 6, have been found by Lyman.

200. The Rydberg constant. It appears from the previous

article that N is not an absolute constant but slightly different for

different spectra. Its values for Hydrogen and Helium, for example,

have been shown to be related by
m

1+WX

JSTh ’

m2

where M1 ,
M2 are the masses of the Hydrogen and Helium atom

respectively.

The accepted value for was 1840 before the advent of Bohr’s

theory, and since, by atomic weight determinations, M2\MX = 4/1-008,
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the value of WHe can be calculated from Wh, which was well known.

The result is in precise agreement with the value deduced by Fowler

from his enervations on the Pickering lines.

Fowler applied the argument in the converse direction, in his

Bakerian lecture, using the values of N for Hydrogen and Helium to

obtain the best estimate of the mass of the electron in relation to that

of a Hydrogen atom. Paschen* has made a very precise estimate in

this way, taking account of relativity corrections, and other small

effects, with the result that

Mi/m = 1843 -

7 .

The true Rydberg constant, which is a multiplier of the wave-numbers

of all spectra, may be called being the value belonging to a nucleus

of infinite mass. Its value is found to be

N* = 109737 7
,

and this is practically the value for all but very light elements.

201. Enhanced Series. The lines of ionized Helium are an

example of what Fowler has called a “AN” series, or, in the previous

terminology, a spark or enhanced series. Such spectra are emitted

under spark conditions in a vacuum tube—though with various degrees

of ease according to the element under examination, and if emitted

under the simple arc discharge, they become relatively brighter in the

spark, in which the arc lines become weaker. While, in a vague way,

it was beginning to be realized that they probably arose from atoms

which had permanently lost one or more* electrons, it remained for

Fowler, as a deduction from Bohr’s theory, to lay down the precise

quantitative significance of such series in the general scheme of spectra.

When one electron has been driven from an atom, the rest of the

atom, being endowed with charge + e, behaves at a sufficient distance

like a Hydrogen nucleus. The lost electron, in its return, is approxi-

mately under the influence of such a nucleus, and emits, in passing to

an inner state, a line for which the Rydberg constant is a multiple of

N—being, apart from correction of order m/M, iW2
for a nucleus of

charge ve.

This is the ordinary, or arc type of emission, and corresponds to

the simplest operation of the discharge in removing one electron, or

simple ionization. For double ionization, the more energetic spark con-

ditions are needed, two electrons are driven off, and the return of one of

them to an atom behaving approximately like a Helium nucleus gives

series spectra with 22W as the Rydberg constant. Other examples are

known in addition to Helium, and more especially the alkaline earths.

* Ann. der Physik
,
l. p. 935 (1916).
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The spark spectrum of magnesium, for instance, has been arranged in

an elegant set of such series by Fowler.

With yet higher degrees of excitation, “ 9W” or 32
i\T series are to

be expected, though none as yet have been definitely isolated, from the

few cases in which “ super-spark ” spectra are at present known.

202. The Combination Principle. A fundamental advantage

of the quantum theory of spectra is the account it gives of the com-

bination principle, already described. The value of W in more complex

atoms will necessarily be a function of a quantum integer in any state,

and the frequency of a line is always the difference of two such

functions. By the localization of these functions, one to each possible

state of the atom, the theory has achieved a somewhat convincing

account of the actual relations between spectra, which has been very

remote from all previous methods of regarding the problem. But it

has not, as yet, given an indication of the physical relationship between

the .principal and subordinate series of any given element.

203. Roentgen Rays. The study of Roentgen radiation has not

yet revealed, with certainty, elaborate series relations such as are

found in visible spectra, but there are many indications of their exist-

ence. The most prominent “characteristic” radiation for any atom

—

a natural type of radiation emitted from the atom concerned—consists

of what are known as the AT-lines and the A-lines. Current atomic

theory relates such radiations to rings of electrons very close to the

nucleus of an atom in comparison with the electrons producing series

spectra. This theory allows d certain amount of mathematical treatment.

Moseley* first proved that the wave-numbers of the fundamental,

or strongest, line from each element were proportional to the squares

of a quantity which increased by unit steps in passing from one atom

to the next in the periodic table. The magnitude involved is clearly

the atomic number of the element, or the charge on its nucleus. The
wave-numbers for the AT-lines are proportional to (JV— l)

2

,
and those of

the A-lines to (JV-7'4)2
. There is thus a clear correspondence with

the spectrum, given by the principles of the quantum theory, of a ring

of electrons. For a ring of n electrons surrounding a nucleus ve, the

spectrum would be, N here denoting the Rydberg constant,

lTl r2 )

where Sn is usually incommensurable. The atomic number of the atom
would be v. From the fact that Sn appears to be constant, it would

seem that there is a fairly permanent type of constitution in the most
internal part of the atom.

* Phil. Mag. lx, April, 1914,
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Further important evidence from Roentgen spectra is contained in

an investigation by Sommerfeld. As we have seen already, the effect

of the change of mass of an electron with speed is to produce a structure

in ordinary visible spectrum lines. The main components in each line

of the Balmer series are two in number, and the effect produced is a

doublet. If AH is its separation, in wave-number, an investigation for

an electron moving round a nucleus ve instead of e shows that the

general separation is v
4 AH . This rapidly increases with v and we

ultimately, for heavier elements, obtain enormous separations, so that

the doublets overlap and cease to be recognized as such except by their

numerical relations.

Such considerations should apply also to the Roentgen spectra, and

the K and L series should be doublets whose separations are simply

related to those in the hydrogen spectrum.

In fact, if A is the observed separation in the K or L series of any

element of atomic number v, A/v4 should be constant. This relation is

confirmed very strongly, as for example, in the sequence of elements

Chromium, Copper, Zinc, Bromine, Rhodium, Silver

with well measured K spectra, where the values are

0
-43

, 0
-40

, 0
-

39
,
0 47

, 0
’35

, 0 44 .

As the elements get heavier, the formula must be regarded as an

approximation, and small discrepancies, gradually increasing, are to be

expected.

204. The radiation of a black body. In the preceding articles

it has been shown how by means of the fundamental ideas of the

quantum theory and certain plausible ad hoc assumptions, we could

arrive at an equation which represented the characteristic disposition

of spectroscopic lines in a series'spectrum, and in the case of hydrogen

even led quantitatively to the correct wave-lengths. The success of the

theory is enhanced by the fact that it was originally introduced by

Planck with an entirely different object in view, that object being the

correct representation of what is called the Black Body Radiation.

The Principle of the Conservation of Energy leads to the conclusion

that inside an enclosure of uniform temperature there is a perfectly

definite distribution of intensity between the different frequencies

depending only on the temperature, which is identical with the distri-

bution of intensities in the radiation of a perfectly black body. If the

laws of classical dynamics be applied to molecular thermal motion, it

was shown by Boltzmann as an extension of a theorem proved by Max-
well that the total energy is equally divided between all degrees of

freedom, and proportional to the absolute temperature. It is clear that

with regard to the molecular velocities which determine radiation this
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equipartition of energy cannot hold. In the first place, the number of

degrees of freedom for frequencies which range from zero to infinity is

infinite, and therefore the total radiation would be infinite, tnd in the

second place the total radiation is found to be proportional to the fourth

instead of the first power of absolute temperature. It is remarkable,

however, that the law of equipartition leads—as shown by Jeans and

Rayleigh— to a formula which is correct for waves of small frequencies.

It is in order to find a theoretical basis for the experimental facts that

Planck introduced the quantum theory according to which the total

oscillatory energy consists of integer multiples of a quantum which is

proportional to the frequency.

Planck has stated his theories in two different forms, both of which

present difficulties. The second is now more generally used, but it

contains the implication that while the emission of radiation by an

atom is discontinuous, the absorption is continuous. Wilson* has

given a treatment of the black body formula which avoids this apparent

defect,) and which reconciles the Planck formula for complete radiation

with the precise specifications of general quantum theory as used in

the discussion of emission spectra. As this appears to be the most

satisfactory account yet published, we shall follow it in detail. The
analysis is closely parallel to the original analysis of Planck.

We begin with the hypothesis that all interchanges of energy be-

tween dynamical systems and the aether are discontinuous. The systems

are conservative in general, but subject to short intervals in which

definite energies can be absorbed or radiated. While they are con-

servative systems, they are ruled by ordinary dynamical laws and are

said to be in steady states.

If (qu q2 ,
•••) are the coordinates which specify the systems, and

(Pi> ih, •••) are the corresponding momenta, let T be the kinetic energy

expressed in terms of the q’s and qs. If the q’s are “normal” coordi-

nates

T = ^A l q1

2 + ...+±A n qn
2
,

where the A’s are explicit functions of the q’s.

Since T is a homogeneous quadratic in the velocities

+ q*
dr

l
Zqn

=p1 q1 +p2q2 + ... +p„qn .

The typical kinetic energy, for a variation of only one q, say qr ,
is

A ArQr = Tr (say
-

).

Then
T\ — AA i <7j

2
,

In \A%q 2
,

* Phil. Mag. 1914 and 1915.
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When we are dealing with a conditionally periodic system, in which

the various coordinates repeat their values in periods —
,
—

,
wc

• v, v2

have at once
2 f Tx

dt = fp&i
and similar equations for each coordinate, for

dT
A

Making, now, the supposition that, when integrated over a complete

period of the corresponding coordinate,

jprd(jr pi-h,

where pr is an integer, and denoting these integrals by H1 , //2 ,
... we

have the quantum specification

:

For any system, let the H’s be H1 = ph, H2 = o-h, II3 = rh, ... where

(p, a, t, ...) are its characteristic quantum integers in the steady state

in which it happens to be at any time.

We proceed to consider the statistical equilibrium of a set of N
systems, characterized by various groupings of the integers p, <r, t, ....

Let NP,<r,T, ... be the number which have p, o-, r, ... as their integers, and

therefore have also H
l
— ph, ff2 — • • • and so forth. The proportion

which have p, o-, r, ... as integers, is

/p,o-,t, ...

_jVp,<r,T,...

N ’

and the sum of all these fractions, taken for all possible values of all

integers, is unity. If EPttTtTt .„ is the energy of a system as a function

of its integers, the total energy is E, where E is the sum of all possible

values of NE
9t <r, r, .../P , <r, t, ...•

The number of ways, P, in which N systems can be distributed, so

thart are of type characterized by p, <r, r, ... is

P m
where the symbol w indicates the product of all possible values of the

expression in the bracket, i.e. of the factorials of all possible numbers

N characterized by any set of integers.

When there is a large collection of systems, all the numbers N will

be large, and we may use Stirling’s formula

* n\ = e~
n nn \l2mr

for each, and find

m[N )'
P, CT, ... J



362 THE THEORY OF OPTICS [CHAP. XV

Planck calls tlie number of ways of distributing a set of systems in

a given way the “ thermodynamic probability ” of the given way, and by

thermodynamic principles, if P is this probability, the entrtfpy of the

way is

<}> = k logP
,

where k is the entropy constant.

The entropy is accordingly

4> = k{E\ogN- log

the summation being for all values of p, cr, t, ..., and therefore a mul-

tiple summation. This is identical with

4* — Ek ^tfp, cr,T, ... log./p,cr,T, ... j

with the same meaning of the summation.

Statistical equilibrium occurs when
= 0,

tlip variation being subject to the constancy of total energy, and also

to the fact that

2/pP, O', r,
= 1.

If we apply the ordinary method of undetermined multipliers, we have

at once

1 + log/p,«r,r, ... + ftPp, <r

,

t, ... + y = o,

where /? and y do not depend on p, <r, t, .... Thus

fP,<r,T,...
= Ae-PE

where 1 = 2 Ae~^Ep> (r ’
T>-.

By the ordinary thermodynamic principles, as in Planck’s theory,

f3
= 1jkT, where T is the absolute temperature. We outline the proof

very briefly.

We have

<t>
- - IN2fp ,

cr, r, ... l0g/p , T> ...

= -kN logA + hN/3 2 AEPt<T>Tt .„e~
^Ec> <r

« T> -

= — £A7 log A + k(3E,

where E is the total energy, or Ar2 Ep>(r,T,...fp,cr,T,...>

Thus # .
!‘NdA AE

d/3- ll dp
+lcji + lcli

dl3-

But since

1 dA
A d/3

and d<f>/d/3 becomes

A%e

we have 0 = 4-^- A %E
P! ct,t,... e Pep,<t,t,

p, <T, T, ... _ 1

V

dE_ hQ
d/3

1
d/3 ’

dcf>

dEp = k/3,

1 dA
Ad/3

E
N*

so that
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and &/3 is the reciprocal of the absolute temperature. The statistical

distribution of the systems is therefore represented by

E
p> gr, r,

.

.. / E
Pl g-

,
T,

...

fp, <t,t, ... kr / S# kr

In order to obtain a form of Planck’s theory as a special case, and

the only form which is consistent with the quantum principles designed

for spectra, we consider an elementary oscillator of Planck’s type, which,

in a steady state, moves according to the equation

mq + kq- 0 .

If its frequency is v, the solution is

q = R cos (27Tvt — O'),

where B and 0 are constants. Thus

p = — 27rmvR sin (27rvt — 6),

and its energy is

27T^v^mR.

Over a complete period, the phase integral is

Jt
pdq = 2ir*vmR2 = ph,

and if Ep is the energy when the quantum number is p, we have at once

Ep = phv,

where v is the frequency. The energy is a whole number of quanta.

The law of distribution of the systems with this single variable integer

P is, by the last section,
phv / oo phv

fp = e kT % e kT

4-
p=o

hv\ phv

e~kf)e~kT .

This is Planck’s law of distribution.

The average energy of an oscillator in such an assemblage is then

readily found to be

E = hv

hv

ekT-1

which is also a fundamental formula of Planck,

The tether, on Planck’s theory, is to be looked upon as a collection

of oscillators which interchange energy with each other, through the

intervention of matter. In a frequency range from v to v + 8v, various

writers* have shown that the number of these per unit volume is

* E.g. Jeans, Phil. Mag. x. p. 91 (1905).

24—2
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where c is the velocity of light. Attaching to each one the average

energy above, corresponding to maximum entropy or the most probable

distribution, we find that the total energy within the range # to v + dv

is given by

TT , 8Trhvz dvUv dv =—3
.

ekT

This is Planck’s law of complete radiation, now definitely established.



CHAPTER XVI.

DYNAMICAL THEORY OF SPECTRA.

205. Extension of Bohr’s Theory. We proceed to apply and

extend the results of the last Chapter to the investigation of the spectrum

given by an electron moving in any possible manner about a stationary

nucleus charged with v units of positive electricity e, and to show that

it still leads, in the case of Hydrogen, to the Balmer formula alone, and

in the case of charged Helium, to the Pickering lines alone. We use

ordinary dynamics and the phase-integral specification of the quantum
conditions which replace the “initial conditions” of orbits in ordinary

dynamics. Essentially the investigation is that of Sommerfeld, though

modified in some of the details, and more especially extended to three

dimensions.

If we use spherical polar coordinates, with their origin at the nucleus,

the kinetic and potential energies are

T = \m {r
2 + r2 92 + r2 sin2 9 <£

2

},

V-- ve

and the equation of energy is

ver
\m {r

2 + r2 9
2 + r2 sin2 0(j>

2

}
—- = — W,

r

where — W is the whole negative energy. The momenta are

dT
Pi =— = mr

t

dr

dT 2 a dT
2 . 2 ,;

p2 =— = mr O, pz = —r = mr2
sin

2
0$,

d$ d(f>

and thus, if we eliminate the velocities,

2 ^ _P*
Pl + +

2mvp
r2 r2 sin

2 9
2m W.

Moreover, p3 is constant— it is the condition, valid on ordinary dynamics,

of constancy- of angular momentum—and its phase integral is

r
7T

p3 d<j>
= n3 k,

where n3 is an integer. We therefore have

p3 — n3hj2ir.
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The equation of energy is one to which Jacobi's general theorem of

“separation of variables” is applicable, and the integrals of the problem

are, if ft is constant,

s 1 —

=

P2 +

p * +F mW'

<r r

Thus the phase integral for p2 becomes

sm2 6
n2 h- jp2dO = J ft?~^

In order to obtain a real result, 9 must range from

'(?)9 = sin
-1

to 9 = tt - sin

and back again, with, however, a negative sign to p2 on the return

journey. Thus

n2h

where ps - ft sin if/. The substitution

ft
2
sin

2 9 = ft
2 cos

2
<f> +ps

2 sin
2

<f>

reduces this to

i= . [* (ft
s -

P*)* sin2 cos2
2

Jo ft
2
cos

2

<f> + Pi sin
2

<f>

'

t
2 dt

or, if tan i>
= t,

W2 a=4(£2 -k)2

Jo

This integral is of a well-known type, and is readily evaluated. The
final result is

n2 k = 2Tr (ft-pz).

But 2/rpz = n2 h, and therefore

ft = O2 +O ~ •

ATT

This is the first significant result,—the angular quantum numbers are

merely additive, a fact which could not have been foreseen before the

analysis.

Reverting to the equation for px ,
we have

* r r2

and the radial quantum condition is

nx h =jPl
dr =fdr 1- 2mW + ,
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between the extreme values of r and back again, with a negative sign

on the return journey. The form of the quadratic shows that the square

root is <^nly real if r lies between two positive values p and q. In fact

where

n1 ft = 2»/2mWj l'jdr,

Q P ~W’ qP 2mW
This integral is evaluated readily by the substitution

r~p sin
2 6 + q cos

2
6,

and we obtain, by simple analysis,

2rrme^v
ny h = 27r/?.

\]2m W
Accordingly, with the preceding value of /?,

2-7T
2 me4vi

/ IW ='-

/r 1l\ ^ ^3

so that, in the final formula for W
,
all the quantum integers are additive,

and count as one integer so far as the positions of the spectrum lines

are concerned. It is very remarkable that the radial quantum number

should be additive with those of the transverse quanta.

IfN is Rydberg’s constant, the wave-numbers (n) of all the possible

lines are given by

n
{(^j + n2 + n3)

2 (m1 + m 2 + w3)
2
}

’

where the ns and ms can take all possible integer values. No line is

included which is not given by Bohr’s simple theory. This investigation

constituted the first success in the substitution of a uniform generali-

zation for Bohr’s original suppositions, though only this brief account

appears to be necessary here.

For paths in one plane, however—which are, of necessity, ellipses

—

we may give a very simple illustration of the effect of applying this

principle. The nature of the restriction of the orbits is, in fact, primarily

a restriction of eccentricity.

This can be shown quite simply without reference to the preceding

analysis. For in polar coordinates, let the equation of the ellipse be

- = 1 + e cos 0.
r

Then r and 0 are the defining variables, and

mJrdr = nji, m jr^Odd = n2 h.

Now

so that

— = - e sin 6 6,

mr — e sin0. mi2,
9.,
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Since r2 6 is constant, we have

mr2
6 =

, n-i
h

—
Jmrdr = Je sin 0 . dr

2TT

Thus nx h =
n3 he

2
f
2ir sin

2 6 d&

72tt Jo (l+e cos 0)
2,

Accordingly */(l — = w2/(wi + nd>

specifying all the eccentricities which are possible.

The quantum theory takes the place of the more usual “initial con-

ditions” which would determine this eccentricity. From many points of

view, perhaps the best view of the nature of the quantum conditions is

found in this replacement.

206 . Fine structure of spectrum lines. According to the

relativity theory, as well as the dynamics of the Lorentz electron, if the

mass of the electron for slow speeds is m, its kinetic energy when
moving with velocity v is

where c is the velocity of light. This of course becomes \mv- when

terms of relative order -
2
are ignored.

c

The accurate equation of energy in the preceding section should

therefore be, since

v2 = rs + r2
fc + r2

sin
2
0<j>

2
,

and since the momenta are, on relativity principles,

Pi-
mr

pf the form, on reduction

{ me2 L

7H)
— me 2 + me2

r r2 r 0_ r

This equation again admits separation of variables, after the manner of

Jacobi. Thus we write

p3 = constant =
2tt

'
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where /? is constant. If we quantize p2 ,
since the equation last written

is the same as before, we again find the same values of /
3

,
namely

P = (>2 + *h)~

,

involving additive angular integers.

The equation forpx is then

so that

2j 2/1 ,
Pi ~ P r

\ i ve~

<1 + —

\

(. me )

= - W

P \

p? = ~- 1 + +

It is sufficient, in a consideration of fine structure in the cases of

Hydrogen and charged Helium, to retain only the first order correction.

We therefore write, on reduction, neglecting terms containing c~4 and

higher powers,

2
„2K L2

,where

H=2m WW2 W vV
2 ,

K= me2 v- v& -
2
-

, L2 =p2 -
2O 0

and the quantization ofpi gives

nji = 2 Jdr j- ff+
2K L2

r %
between the extreme values of r making the square root real. We find

easily that

Substituting the values of K, H, L, and expanding in inverse powers

0/ c, to the order involved already,

w,

mve2
<n x h _
27r s](2mW)

k
The first approximation, with /? = (n2 + ns)

—
,
is naturally

JuTT

W =
2-rdmdv1

1

hl ’ (nY + n 2 + n3f
and this may be used in determining the second, which becomes

W =
9

2-7r
2me4

v
2

1
1 +

4ttV Wi + i {n 2 + n3)

}•K1 '

(nx + n2 + m3)
2

[

x
' k2

c
2 ’

(iii + n2 + ns)
2 ' n2 + n3

The fine structure of the lines follows from the large variety of choice

of the integers nx and n2 + n3 , the latter being purely additive and
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equivalent to a single integer. For this value of W is no longer

symmetrical in the integers defining the radial and transverse quanta.

The validity of the formula has been confirmed most especially by
Paschen* when v— 2. He examined the fine structure of many of the

Pickering lines and found a variety of components for each, whose

separations were very closely in accord with those to be expected from

this formula when all possible values were put for the integers in the

formula
W- W' = hf,

wheref is the frequency of the emitted line.

This was a remarkable success for the quantum theory. The
structure' of the Hydrogen lines is more difficult to determine experi-

mentally, owing to the extremely small separations. For it will be

noticed that the separations are of order

4*V 0

lire
1 '

V

proportional to v
2

,
and are therefore, in the case of Hydrogen, roughly

only about a quarter of the corresponding values for charged Helium.

Sommerfeld’s own investigation is much more complicated, and*

extensive, in certain respects. For example, in two dimensions, he

discusses the path of the particle, which is an ellipse whose perihelion

moves round in the relativistic manner, so that the motion is not

periodic. Doubt would thus be raised as to the precise manner in

which the relation

/pdq — nh

should be applied to the angular coordinate, if we did not take the

specification of its application to pseudo-periodic systems defined earlier.

We have here a definite distinction between the investigations of

Wilson and Sommerfeld. The latter states that the principle, as he

uses it, is purely tentative also in this respect—the appropriate Unfits

for 6 in the integration—and attempts to justify it by reference to

Planck’s cell-quanta, but is clearly not satisfied.

In Wilson’s specification, the limits are quite precise, and are zero

and 2 tt for 6.

The equation to the path is of the form

l
,- = 1 + e cos

r

where /* is nearly unity, but in general incommensurable. This can be

regarded as an ellipse whose perihelion slowly advances, and Sommer-

feld’s procedure was to integrate over a complete period 2ir, with, the

justification that the advance of perihelion is extremely small.

loc. cit«,



206-208] DYNAMICAL THEORY OF SPECTRA 371

The results of the two methods of looking at the problem are the

same within any possible limits of experimental error, though Wilson’s

method is more precise and satisfactory.

207. The constant of spectral separation. Another interesting

consequence of the last investigation is the emergence of a new universal

constant of spectra, a constant of line-structure. For we may write

a
_4*V

“
it

1
c
2

and, numerically, inserting the accepted values of e and h,

a=7 x 10- 3
.

The fine structure of the lines of the Pickering series is in good accord

with the view that a is a universal constant.

It should be pointed out, however, that while the quantum theory

appears to give, correctly, the positions of the components of a fine

structure as found in the laboratory, their relative intensities can vary

greatly with circumstances. On the question of intensity, the theory

has not yet proceeded far. We shall, at a later stage, indicate the

direction in which speculation is proceeding, in a tentative way, towards

a mode of prediction of the intensities and states of polarization of

spectral lines.

The intensities, as we have stated, depend very much on the mode
of excitation of the spectrum. For example, Merton and Nicholson, by

interferometer measurements, were able to measure the separation in

the lines Ha and Up, then only showing two components. The
separation of Ha confirmed Buisson and Fabry’s value 0T32 A.U.,

while that of Hp was 0’030 A.U., the exact value appropriate to the

case in which the Balmer series is regarded as a Principal Series, with

separation vanishing at the limit of the series. This phenomenon

Occurred in the Hydrogen Spectrum under ordinary conditions. Merton

has since shown that, under different conditions, a new and strong com-

ponent appears. This may have been present weakly before, and there

is no evidence against Sommerfeld’s calculations of the positions of the

components.

208. Dependence of fine structure on the mass formula.

Other electrons than that of Lorentz have different formulae for the

variation of mass with speed, and it is interesting to know, although

they violate the Principle of Relativity, the fine structure to which

they lead in the spectrum. It is sufficient to mention an investigation

by Glitscher*, who examined the Abraham electron from this point of

view.
* Ann. der Physik, lii. pp. 608—630 (1917).



372 THE THEORY OF OPTICS [CHAP. XVI

It was found that this electron, with its proper mass-formula, gave

separations more than 10 per cent, too large. Glitscher regarded this fact,

with Paschen’s spectral measures, as a confirmation of the validity of

the Lorentz electron. It seems preferable to accept that electron and
the relativity theory, and regard it as a confirmation of the present

theory of fine structure.

209. Experimental difficulties. There are considerable diffi-

culties attaching to the size of the emitting atoms when the quantum
numbers become large. If, for example, we confine ourselves to Bohr’s

original circular orbits, in the case of a Hydrogen atom, the radius in

any stationary state is proportional to t2
,
where the number of quanta

of angular momentum is r—or the angular momentum of the electron

is tA/27t. The “normal” radius of the Hydrogen atom (r=l) on this

theory is, for a circular orbit, of order 3.10-9. In the solar chromo-

sphere, 33 lines of the Balmer series are actually capable of measure-

ment (Dyson), and the existence of the last one requires a sufficient

proportion of the atoms of Hydrogen to be 332
or 1100 times the

normal radius.

In vacuum tubes, the usual number of lines observed is 6 or 7,

requiring a much smaller maximum atomic radius, and in fact, in the

usual vacuum tube with a pressure of the order of 1 to 3 millimetres

of mercury, such atoms have a free path, as calculation readily shows,

quite consistent with the power of radiating as individual and undis-

turbed systems, without appreciable influence from neighbouring atoms.

Larger atoms of the size required above are presumed capable of

existence in the chromosphere on account of its low density, though

the relation of this necessary low density to that indicated by other

phenomena has not been discussed.

Recently, the problem has taken on a new aspect, for Merton^
obtained 14 members of the Balmer series in a Helium tube at the

great pressure of 42 millimetres of mercury. The Hydrogen in the

tube was only the small quantity emitted from the electrodes when

the discharge was passed, and all the lines were very sharp—a fact in

itself probably indicating absence of disturbance in the electronic orbits

on account of the proximity of neighbouring atoms.

Calculation shows that at this pressure, the necessary radius of the

Hydrogen atom with t = 14 is actually greater than the mean distance

apart of the Helium atoms. It would seem that this result contains

valuable implications with regard to the “bound electron.” For bound
electrons in different atoms do not seem to influence each other, e’fen

* Froc. Roy. Soc. (A), 1920.
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at distances apart comparable with the radius, except perhaps cata-

strophically with interchanges of energy only in quanta, or in amounts

which caji permit the aio ns to jump to new stationary states. But

we shall not further discuss this aspect of the theory.

210. The general spectrum formula. We now proceed to

indicate the manner in which the quantum theory of spectra must

lead, in cases more complex than Hydrogen and charged Helium

atoms, to the Ritz formula for spectral series, as a third approxi-

mation—though we sketch rather than give a full account of the

investigation.

If a neutral atom loses one electron, this electron, on its return, is

under the influence of a complex system of charge +e, and when it

is sufficiently far away, the effect on the electron is that of a Hydrogen
nucleus. Divergences from this effect occur because the field of

potential in which the electron moves is not proportional to r-1 as in

the previous theory. Actually, the field is not stationary, on account

of the orbital motions in the rest of the atom—or the quasi -nucleus

—

but these motions are so rapid that a mean value may be used for the

field.

If the atom has lost v electrons, and one is returning, similar

considerations are valid, and the field of potential is, in its first

approximation,

Tr v&v=+—

.

r

We are thus led to the consideration of the motion of an electron in

a convergent mean field of potential of the type

V= «1 «2

r r2 >

where the a’s rapidly decrease. Ordinarily the a’s will be of orders

proportional to the corresponding power of some length a determined

by the nucleus and inner electrons, and which is very small compared
with r, the distance of the electron from the origin.

In spherical polar coordinates, the equation of energy of the

electron is

{r
2 + t*02 + j

-2 sin2 Oft} - = - W.

More strictly, the energy of the whole atom should be involved. We
are neglecting the action of the returning electron on the rest of the

atom, which is small, and even smaller when a mean value is taken

for the atomic motions.
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The momenta are

Px = mr, p2 = mr2
0, p3 - mr2

sin2
0(f),

and as usual

p3 - constant = n3h/2*,

p? + ?\-
a = fP,r

sin
2 0

and therefore

4«.(*’+£)-*(? +3+ -)
= -»V.

while from the phase integral for p2 ,
we have as before

fi = (n2 + n3) h/2Tr,

according to the additive property already described. The equation

for px is

A- 0 lir 2mea.x ft
2 - 2meo2 . 2

,
«W1

2m

W

+ = -+ 2me^—A .

r r 3 rn)

We must further suppose that /3
2 > 2mea2 ,

which, as can be seen readily

from a consideration of orders of magnitude, will occur under our sup-

positions above. In actual fact, a2 will ordinarily be zero, when mean
values of the potential of such a system are taken, and only odd

powers of r~ x
will occur. We may suppose this to be the case without

real loss of generality. Thus

nxh= dr 2mW + 2mv
(? /3

5

“o' + 2m&
(
—» h

—

r + . .

.

If we neglect a3 and later coefficients, this leads, of course, to

previous analysis, with the result

2Tr
2mei

v
2

since

h2 ‘

(nx + n2 + n3)
2 ’

;e ft — (n2 + n3)
Ji[2tt.

Taking account now of a3 ,
if

x/{-
5

e
2

ft
2
)

2mW + 2mv ^
r rl

)

we may write, as the next approximation,

„,h = fdr{N +^},
which can be taken twice between the critical values of r, making

w=o.
We do not give the analysis, which presents no difficulty, and quote

only the value of the integral, which becomes

, . f mve2
n m2 vei

)+ 1?-/’
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when a.
2

is neglected. The value of W is

W= 2 Tr
2me4

v
2

w~~ Wj + n2 + n3

8Tr4m2
ve

3
as )

~2

h4 (n2 + n-if)

For a system of given sum of angular quantum numbers, this is of

the form
2ir

2me4v
2

1
~¥

'K'+7)
2 ’

W=

where /* is constant. This leads to spectra of the Rydberg type, which

naturally appear as second approximations in sequence to the Balmer

type. They will obviously possess the more important practical limita-

tions attached to the Rydberg formula, which is knowTn to fail more

and more as we approach the earlier members of the series. On the

present view, this is a consequence of the smallness of n
} ,

the radial

quantum number, for the earlier lines. The distance r of the emitting

electron is not large in comparison with the atomic radius, and our

neglect of a5 ,
a3

2
,

... is no longer justified.

Proceeding to the next order of approximation, we note that a3 is of

jorder a2
in the length a, and as of order a4

,
so that a5 and a3

2 are of the

same order and must be retained together.

The necessary integral is given, to the requisite order—using the

binomial expansion—-by

nji =
mea3

N2?
+
mea5 m2

e
2 a 2 '

2VV V

W

i_
’

The evaluation of this integral—again between the roots of N= 0

twice—is somewhat tedious, and the analysis must be left to the

reader.

The result in full is

, . f mve n m erva.*

]

Ihh = 2tr ]
-= - P +

In/2mW F )

l
z
e
5

;

w
Trmve2

(
0M3

«
5ra5 15ms

ve
4as

2

}+ ~3
t 2ft

4
+

8£4 '

)

P
?iTrm TV

~w~

S/3
4

{vnfe2 a5 + \m2
e
2a£},

to the order in question, namely a4
.

This leads to the form

2 Tc
2me4

v
2

¥~ n 1 + n2 + n3
- 87r4m2

e
sva3

h4 (n2 + nVf

80n8m4
e
n

i'
2

h 8
(rt,+ n s)

7
(3as

2 + 4^a5) +
9Qm2

e
2
ir

6

U8 (n2 + n3f
mW (|a3

2 + vea5
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For a given sum of angular quantum numbers, this depends on nx

according to the law,—

N

being the Rydberg constant,

—

W A7 2 /f
t~ Nv

where /q and are constants. This leads precisely to the Ritz law of

spectra, according to which the “variable part” of a series of wave
numbers n x is

N
(n + /q + i^n^f

or, with similar approximation,

N

b +

+

(^?]
It is very remarkable that successive approximations to the quantum

theory should give in turn (1) the Balmer form, (2) the Rydberg form

and (3) the Ritz form of series, just in the historical order in which

they were successively developed as measurements of spectra became
more exact.

We do not continue the approximation further. The factor v
2
is in

accord with “Enhanced” or Spark spectra, and the theory of their

origin from atoms which have lost more than one electron has been

fortified very much recently by the experimental work of Fowler, notably

in relation to the spectrum of magnesium.

The general analysis of phase-integrals, in fact, although we cannot

give a full account of it in this treatise, makes it quite clear that in all

arc spectra in the visual ranges for which the Rydberg constant is W,
only one electron is primarily concerned in the emission, and that its

orbits are described under an influence which, at least as a first ap-

proximation, is not very different from that of a Hydrogen nucleus. In

other words, a single electron is proceeding, by jumps from one station-

ary state to another, towards a singly charged atom. In all spark spectra

of constant “4N,” the atom is doubly charged, and only one electron is

returning. There is little doubt that the “ super-spark ” spectra, known
in such elements as Carbon and Silicon, which are not yet investigated

sufficiently fully to be arranged in series, will require constants 3
2W,

42N for the constants of their series. Some of these super-spark spectra

can be predicted at the present stage of the theory.

For example, we can determine the wave-lengths of the only possible

spark spectrum of Lithium, on the supposition that its atomic number
is 3. If it loses two electrons, thus retaining only one, its spectrum

should be, in wave numbers,
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with 2V= 109730 for Lithium. The only values in the range A 3000

to A 7000 are n = 22220 ‘3, 19348’3, 24072’0

with wavelengths A = 4500‘4, 5168'4, 4154'2

where only the first should be strong. In the same way, a super spark

spectrum of Beryllium, with constant 162V, canbe calculated, but the spark

spectra of these elements have not been investigated in the laboratory.

The remarks just made regarding the origin of 2V, 42V, ... series

must be applicable to Helium. These considerations amount to a

demonstration, on the quantum basis, that the Helium atom, at least

in the intervals of its radiation, exists in stationary states in which one

electron is very much “ internal ” to the other, and the search for these

states is the only path to a precise theoretical deduction of the ordinary

Helium spectrum. Many model atoms for Helium have been proposed,

but all fail to produce the known spectrum, though they are often

capable of quantitative agreement with other phenomena. Perhaps one

of the most interesting is that

of Langmuir. In this model

the electrons oscillate in step

from P to Q, and R to S, and

back again, the line joiningthem

being always perpendicular to

PQ and RS. The whole atom

may also be rotating round its

axis. This atom may be made
to give the experimental value

Fig. 188. of the ionizing potential almost

exactly, but it cannot give a spectrum depending on the simple Rydberg

constant in the ordinary way.

The current view is that the two electrons describe orbits of very

different dimensions,—that motions are possible with the orbits nearly

coplanar and also nearly perpendicular,—thus accounting for the two

different types of series in the spectrum, consisting of sets of doublets

and of single lines. The details of these arrangements have not been

elucidated analytically, though much evidence has been adduced in

favour of them by various writers.

211. Ionizing potentials. An important mode of investigation

of the atom models of the quantum theory, while not strictly relevant

to our point of view in this treatise, must be mentioned. A question

which has been much disputed centres round the ionization potential of

a Hydrogen atom, whose normal state is defined by

TI, 2 7r"mei

with t = 1.

s.
'

25
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If V is the potential of the surrounding field, measured in volts,

the energy given to an electron is 1/rnv
2
,
or

eV

so that if

. 10s

c

eV 1A8 2Tr
2mei

, AT— . 108 = W - = heN
c hr

where N is Rydberg’s constant, the electron of the atom should be

driven to infinity, and the atom ionized. Various experimental values

for V have been found by different investigators. The theoretical

value is

V=— .N. 10-8

,

e

which we may evaluate as accurately as the data allow. The cal-

culations of Sommerfeld and Bohr are well known. With the best

measurements,

A =6-55 .
10-27

,
N= 1-097. 105

,
e = 4'77 .

10~ 10
,

and we find V = 13'56 volts.

A quarter of this amount would ionize the atom in its second state

t = 2, but only a small number of atoms should be in this state. The

most accurate measurement is apparently that of Horton and Miss

Davies*, who find 14’4 volts with a possibility that the value is too

high.

For other atoms, spectral evidence alone indicates that the ring-

arrangements are not the forms which ordinarily appear as stationary

states. The evidence given by the ionization potentials’points in the

same direction. In the case of Helium, a very curious situation has

existed in regard to this potential. Rau’s experimental investigation

(Wurzburg, 1914) showed that Helium was certainly ionized at 80 volts,

and was not ionized at 7 5 volts. Several later investigators have shown
that an ionization occurs also at about 25 volts.

A very recent paper by Compton and Lilly f appears to settle the

question in favour of the quantum theory, although the authors only

register details of results.

" Let us consider the potentials to be expected in various circum-

stances. The energy of the ring arrangement in its normal state is

W =
2

~D’-*
taking account of both electrons. This becomes

W-^keN,
O

* Roy . Soc . Proc. 1920.

t Astrophys . Journal ,
July, 1920.
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and the ensuing potential is given by

e V 49 , Ar— 10~ 8 = — heN,
c 8

in order to drive both electrons away simultaneously.

V= 83 '4 volts.

The value is

If the second electron remains in the atom, the energy left in the

normal state is

W = 8^ me*

and the potential required for the difference is 28'9 volts. The other

54‘5 volts is required to ionize the charged atom. The ionizing potential

of the ring atom is dependent on the orbit to which the remaining

electron belongs. If it went to its fourth orbit, the potential would be

almost precisely 80 volts, but there is no reason why this particular

orbit should he chosen.

The experiments of Compton and Lilly are very exhaustive, for,

unlike other investigators, they have found the potential for the various

.individual types of Helium spectrum, i.e., Helium, Parhelium, the band

spectrum, and the line A. 4686 due to the charged atom. They caused

the emission by bombarding very pure Helium with the electrons from

a hot filament cathode at various pressures, the limit being 24 mm. of

Mercury. All the spectra appeared at 2
5
’5 volts with low pressures and

comparatively low current densities,—which are the conditions necessary

for the present test, in which multiple impacts must be avoided. This

must be regarded as the true ionizing potential of the Helium atom, but

we can draw the further conclusion that the Helium and Parhelium

spectra come from different types of states of the same atom. Moreover,

the theoretical result is too high, and this experimental result, though

not decisive, is adverse to the ring system.

The Pickering series has two ionizing potentials, 80 volts and

55 volts. It is clear that these represent the potentials necessary (i) to

drive off both electrons at once, and (ii) to drive off a single electron

from the charged atom. The second is precisely the theoretical valine,

and if the nature of the charged atom were not already sufficiently clear

from the fine structure of its lines and other phenomena, this would be

a strong confirmation, indicating also that these potentials can be

measured to within about 2%. But the same discrepancy occurs at 80
•volts, the theoretical value for a ring being 83'4, as occurred at the 25*5

voltk against 28*9. It seems to indicate that the true normal energy of

a Helium atom is smaller than that of the ring system in the ratio

80

83*4
0-959.

25—2
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This fact would in itself, according to the principles of stability valid

in the quantum theory, make the arrangement more probable, as a

normal one, than the ring-system.

The fact that the band spectrum is produced at 25 5 volts is

especially interesting., For it indicates that this spectrum, which cannot

be attributed to a charged atom, is due to something which comes
into existence at once in the presence of charged atoms. The only

possibility seems to be a molecule, and it seems necessary to suppose

that a Helium molecule He2 with a positive charge can have a purely

temporary existence under the conditions of discharge.

It should be noticed that the values of W which are possible in the

various stationary states are known from the partial quotients in the

spectra, even though the actual orbits in the atom may be beyond our

knowledge. From these quotients, moreover, we can calculate the ioni-

zation potentials. For example, Hicks’ formula for the wave numbers

of the Helium Principal Series is

n = 38453-35 - 109666-2

j
im + 09294 +

°

and if this is of the form predicted by quantum theory, putting m=l, w

a possible ionizing potential is

^ 109666 2
y ~ LVC

e * (1"9372)2 ’

which is fairly close to 80 volts.

212. Ehrenfest’s principle. In proceeding to some of the more
general considerations which belong to the optical side of the quantum
theory, we shall begin with Ehrenfest’s principle, which occupies, in

some sense, a similar position to that once held by the “quasi-stationary”

principle in the mechanics of the electron. It has been called the

principle of “mechanical transformability” of stationary states. We Ho

not propose to give any detailed analysis, for which reference must be

made to original memoirs.

, We suppose a system, with stationary states, in whose neighbour-

hood a field, say of electric or magnetic force, is slowly created

and increased, and proceed to calculate the ensuing variation of the

stationary states. Clearly it is not in fact to be calculated by ordinary

dynamics, but nevertheless, if the field varies slowly enough, the

states at any instant cannot differ widely from those corresponding

to the instantaneous conditions of the field regarded as having been in

operation permanently. It should thus be possible by ordinary dynamics

to calculate the variations of states at least with good approximations

when the field varies slowly. This is Ehrenfest’s principle, called by him
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the “Adiabatic Hypothesis.” It shows the possibility of a continuous

mechanical connexion between two states, without which the equation

hv=WY-Wit

has no meaning, for we cannot define the energies of two states unless

there is some continuous connexion from one to the other by mechanical

laws.

Considerable applications of this and allied conceptions have been

made by Bohr recently. They have not led to new results in relation

to spectra, but they have supplied comparatively simple proofs of the

first approximations to such phenomena as the fine structure of Hydro-

gen lines, the Stark effect, and the Zeeman effect,—the two latter when
the exciting magnetic fields are very small. The main function of the

principle is in fact the simplification of the analysis in the deduction of

first approximations.

With our formulation of the quantum theory, it is possible to give

a simple demonstration of this principle at least when we deal only with

a strictly periodic system with one degree of freedom. The analysis may
be compared with Ehrenfest’s which is of course similar, and Bohr has

recently given a proof which is essentially the same, though looked at

from what is really the reverse point of view, Bohr’s object being to

demonstrate the formula

jpdq = nh,

as an invariant relation during the slow establishment of the field.

If a system has coordinates qx ...qn and momenta ^ ... hn ,
and an

energy function E, kinetic energy T, and is in periodic motion with
period r, the integral

n rT

J= 2 I prdqr
l Jo

/•<• n fr
=

I ~%prqr dt = 2 /
Tdt.

Jo 1 Jo

If there is another periodic motion, slightly different, under the in-

fluence of certain external forces, and if the variation from one motion

to the other is denoted by 8,

= j
2 (qr $Pr +Prtyr) dt +

the* square bracket being due to the change of period in the new motion.

Thj^ may be written in the form

8/ =
jo

2 (qr Spr -pr 8qr) dt +
J^2

pr (qr &t + 8gr
)

J
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and the square bracket is zero since the new motion is periodic, the

quantity in the bracket repeating itself. Hamilton’s equations give

. dE dE
qr ~i

)pr
> Pr ~ dqr

’

2 (jr$Pr ~Pr &<jr = §E,

and thus SJ=f 8Edt.
Jo

If the field has a potential V at any instant, and has required a

long interval tx for its establishment to the value in the second motion,

it began at t = -t1 ,
and has increased uniformly to the present instant.

Then 8E is the work it has done on all the charges of the system, so

that

8E=-
Jt= -tx

dqr
qrdt.

t1 + t

ti

(at t = 0), the factor (tl + t)/t-, expressing the uniform increase,

time t greater than zero, we add

\

n
-J-qr

dt.
o dqr

At a

If we neglect the square of the field, values of the q’s can be used

corresponding to the first motion. We have also

8E=\ f° Vdt-(V),

where ( V) is the value at a time t subsequently.

The first term is the mean of the second through a period, and so

the integral of 8E over a period is zero.

Thus 81 ~ 0, or Sfpdq is invariable for a system periodic at any

moment during the establishment of the field. For one degree of

freedom
“

fpdq = nh

in the presence of the field, whose intensity must remain small.

The above contains Bohr’s view of the necessary conditions involved

in the presence of an external field, and he has not generalized it to

larger fields. According to our view, this generalization is always

possible, for any field could be replaced by a suitable number of charges

in suitable positions, which can be regarded as an integral part of the

system. The formulation

jprdqr = nh

should continue to be valid, and, for reasons outlined in an earlier

section, it is preferable to lay down this relation as a unique and

sufficient foundation for the whole theory.
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213. Conditionally periodic systems, and separation of

variables. The successful applications of the quantum theory have

hitherto Jteen entirely restricted to cases in which Jacobi’s theorem

allows us to separate the variables in the energy equation. We must

at this point consider the underlying principles involved in the pro-

cedure, and we may begin with a statement of Jacobi’s fundamental

solution.

Let a system of m degrees of freedom be defined by the usual co-

ordinates ... qm , and momenta^ ••• pm ,
with an energy function E.

Then we have the usual set of equations

Pr = - dEI
dqr , qr — dEjdpr ,

when E is determinate in the p’s and q’s.

If there exists a function S, determined by the q’s, so that

pr = d$jdqr ,

the energy equation is of the form

• qm
dS dS\

tyi"' Hm)
= - W

where W is constant. There are also m— 1 constants of integration in

its complete solution.

It may happen that orthogonal coordinates are available, say the

^’s above, which allow a solution of the form

S=2Sr + c

where 8r is a function only of qr ,
containing of course any number of

constants. Then the system is said to allow “ separation of variables.”

The momentum pr then depends only on qr ,
thus

Pr ~dqr ~dqr'

Moreover, pr is the square root of a function of qr ,
from the fact

that mechanics gives E as containing the momenta as a sum of squares,

—this is also true in the case of the mechanics of relativity, which is

the reason for success of the theory in giving an account of the fine

structure of Hydrogen and charged Helium lines. If Sr = *]f(qr) we
can write, accordingly,

8=% j Jfr(qr)dqr ,

each- function fr containing some or all of the integration constants.

This is the sum, in essential, of a set of phase integrals. For if ar , j3r
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are the roots offr (qr) = 0, the function >S' may be said to have a modu-

lus of periodicity for every coordinate, the typical one being

Jv J \/j/• dq^

taken from a,, to /?,. and back again.

Theoretically, equations of this type can be reversed, and the

various constants of integration, say (yx , y2 ,
••) expressed as functions

of the J’s, say

y,. Fr (Ji • • • Jrn)

and substituting for them, we have

S=$Sr (qr ,

^ n/J~r (^r ,
J\ • • • Jm) dqr .

According to our formulation, all the J’s are of the form nh, where

n is an integer. They are all determinate, with separation of variables,

each pr being expressed in terms of the corresponding qr only.

214. Trigonometric series. Regarding the q s and p’s as a set

of variables at any moment, we can write

B8 dS
Pr ~dqr

> Ur " djr
where $ is expressed entirely in ^’s and J’s as in the formula last

written. Then the p’s and ^’s are transformed, and we have the system

expressed in terms of the ./’s and m’s.

Evidently if qr goes through a complete cycle (from ar to /?,. and
back again), ur ,

regarded as dependent on the q’s and J’s, will increase

by unity. But if one of the other q’s goes through a cycle, ur also goes

through a cycle, and its value is not altered. Thus the ^’s and p’s are

periodic in the u’s, with unit period, and they must admit expansions

of the type

and the coefficients of this expansion are functions only of the J’s,—
which in our specification, means that they depend only on the quan-
tum numbers determining the J’s.

We may now introduce a theorem of Jacobi, to the effect that a

transformation of the type we have made does not alter the canonical

form of the equations of motion.

Thus they become, in the new variables

t -JtE • - dJLJr ~ dur
’ Ur ~djr

’

But as E is the constant - W, dEjdur = 0, and thus

Jr = constant

this being the constant we take as of type nh.
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Moreover t + constant

where
3£1

oJr
is of the nature of generalized angular velocity.

The us are accordingly called “angular coordinates.” In fact, r—

is the mean number of oscillations of qr in unit time. Each coordinate

qr oscillates between limits dependent on the J’s, and systems of this

type are called “conditionally periodic.” The displacement at any

time, of a particle of the mechanical system, must be expressible

uniquely in terms of the q’s
;
and must also therefore admit a trigono-

metric series of the same type as the series mentioned for the q’s, the

coefficients again depending only on the «/’s,

—

i.e. on quantum integers.

Since
0

ur = . t + const. = <nr t -f const, (say)

the frequencies of the harmonic analysis of any displacement are of

type

+ n.2 w2 + • • • +

where the n’s are integers.

The paths of all particles are determinate in general—this point has

been a source of considerable difficulty in the quantum theory at many
points, for it has often been possible to choose the suitable orthogonal

coordinates in more than one way—with, as a result, the same value of

W in all cases, but totally different types of paths for the particles.

The source of trouble lies in “ degenerate ” cases, in which motion does

not occur in all the degrees of freedom.

The result above shows that the paths are strictly determinate if

the number of these quantities o> is equal to the whole number of

degrees of freedom, and if they are all mutually independent, with no

identical relation between them.

We have not included, in our account, an illustrative case of such

a degenerate system as is here mentioned, involving a comparative

treatment by two different types of coordinates, as it did not appea? to

be necessary, and a statement of the existence of entirely distinct paths,

but tlfe same final W in the two cases, appears to be sufficient, and of

course, it is the unique value of W which is important for spectral

series, though the nature of the path-difficulty required some elucidation.

Atypical instance of a degenerate case is of course the Hydrogen atom
undisturbed by any influence external to it. An alternative treatment

fo? it, giving very different paths, is provided by the use of elliptic

coordinates,—which readily give the solution, in place of spherical

polars.
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That there is, however, a unique solution of paths for these de-

generate cases is now clear, if there is a unique solution for a con-

ditionally periodic system of which they are special cases. The difficulty

lies solely in its direct determination for the special case, and not as a

particular type of a solution already obtained in general. Provided at

least that they are degenerate cases of a conditionally periodic system,

—in our view, of a system for which unique and finite phase integrals

exist for each coordinate involved,—they must, as we have proved

implicitly here, admit a definite solution.

It is of interest to show how precise Fourier series may be found for

the representation of the motion. The method is essentially the usual

astronomical method, though generalized in certain respects which it is

not important to particularize.

Suppose that we wish to expand any function f of the q’s of the

system, the form being

/= 52 ... A ni> „. nm

Fourier’s theorem gives the coefficients at once as

0 J0
f- e

~2,ri(n, 'Vl '" +nmVm) dvidvz ••• dvm

where f, under the integral sign, is regarded as being expressed in

terms of the v’s and J’s, the coefficients A coming, as they should, to

be functions only of the J’s.

An integral with the q’s as variables is obviously more convenient

for analytical purposes, and this introduces the Jacobian D, or

7) = = a (^i •••«»)

d(q)~ d{qi ...qmy
But, in terms of the q’s, the us are given by

ds * as. « f am m

5T = 2
OJ r £ — 1 <Jj r s—

i

djr
*lf» (q») dqs

and the determinant D is of a simple type, being the sum of products

of functions, each containing only one q.

If/ is of the same type as D then the final coefficient A ni ...nm is of

the type
(r) j (r) (r)

2*7 *7 -..*'m

where the <f>’s are definite integrals of the form

<f> being a function only of qr ,
and the integral being between the limits

of qr and back again. They are in fact phase-integrals, and the problem

is definitely solved analytically.
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The trigonometric expansion is thus determinate, for the function/,

under the hypothesis to which we have subjected/ namely that it is

expressible as a set of terms each consisting of products of functions of

single individual q’s only. We see that this condition appears to be

essential.

The function / ordinarily may be any Cartesian coordinate of any

particle of the dynamical system, and in the case in which the q’s

belong to the wide class of elliptic or ellipsoidal coordinates (including

parabolic, spherical, and so forth), it is known to be possible so to

express the coordinates, as Jacobi showed*. No coordinates other than

those included in this class have been effective hitherto in the quantum

theory of spectra. In fact no others have been found in which the

necessary separation of variables is possible, and it is believed but

remains without proof, that no others exist. This belief has been

expressed by H. A. Kramers, to whom reference should be made. The

actual determination of any of these trigonometric series in a particular

case is not included in this treatise. Many have been found by

H. A. Kramers (Copenhagen).

They are used in obtaining prophecies of the intensity of component

lines corresponding to passages between term-numbers. Other methods

of determining them can be found, and their development is known in

the case of a single Hydrogen atom, and, approximately, for the same

atom disturbed by electric and magnetic fields. The results, regarding

intensity of components, agree very well with observation, and seem

to establish,—as worked out mainly by H. A. Kramers,—the foundation

of this method of deducing intensities. But this discussion does not

propose to enter into the question of the intensities of spectral lines in

detail. Some great limitation of the scope of the subject was essential,

and it was deemed desirable to concentrate attention upon the actual

positions of lines in the spectrum, which must, on any view, constitute

the final test of any theory purporting to give a genesis of spectra.

For these reasons we shall only give a brief account of the Stark and

Zeeman effect for hydrogen and charged Helium
;
at the same time

a few remarks on what the authors consider to be the best point of view

in the matter of polarization and intensity of lines seqpi to be called

for. The problem is only considered in a very obscure and tentative

manner by most writers who have dealt with it, and statements abound
for which no justification can be seen readily. It seems possible,

however, to'put the essential part of the argument in a succinct form.

' The first impetus was undoubtedly given by Einstein (Phys. Zeit.

ip, 1917) when he developed his conception of the a priori probability

of spontaneous transition between stationary states. This idea was

* Vorles. uber Dyn. p. 202.
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actually introduced in connexion with temperature radiation. A
system in a stationary state 1 must be supposed to possess an inherent

probability of passing to any state 2 of smaller energy. Let this be

called A^dt, implying that the atom will perform the passage in time

dt with this probability. This relates to an undisturbed atom. If it

is surrounded by radiation, the presence of the radiation will introduce

a new probability Bndt ,
which must of necessity involve, as a factor,

the density of the surrounding radiation. But in a vacuum tube in

which the radiation is actually excited, it is clearly the probability of

type A which is effective in determining the intensity of any spectral

line. The atoms cannot be in temperature equilibrium with their sur-

roundings, for the actual emission is due to bombardment by electrons

which drive others out of the atom. Moreover, the density of the

radiation cannot be large, a fact which in itself makes the effect of

B12dt secondary. If n atoms are present in the tube originally, the

energy contained in any radiation of frequency v emitted in time dt

must be nearly given by

n .hv . Axidt,

if the atom emits one quantum at a time, v being the frequency

determined by passage between state 1 and state 2.

We have already mentioned Bohr’s principle of analogy between

the quantum process of radiation and the ordinary electrodynamics,

which makes their results asymptotically equivalent in the region of

long wave-lengths. This equivalence can be brought out very simply

in the case of conditionally periodic systems—which for convenience,

are supposed to be non-degenerate, so that the formulae of this section

can be applied to them.

Let tii, w2 , ..., nm be the integers applying to state 1 of such a

system, and «/, nn', ..., nm
'

the corresponding integers for state 2.

Any intermediate state can be defined by a J, such that

Jr = [»! + A (rii — Wj)] h,

where X can take any value from zero to unity, the states themselves

appearing as tlje limits, and the intervening states all being “mechani-

cally ” possible. The frequency emitted during the transition between

the two states is at once found to be the mean value, from X = 0 to

X = 1, of the frequency

( rii — n,i) (Ox + (n2 — n2
’) + . .

.

,

arising in the harmonic analysis of the electronic motion. Otherwise,

we have, naturally
m

hE— %<Or8Jrt
i
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between the two states, or its equivalent for frequency,

’ =Lt = L(j^ +TS/* + ')
= il

dX «* -^ +

as stated.

The region of large wave-length signifies that for which the integers

n are all large in the states concerned,—small wave numbers in the

resulting lines of the spectrum,—and if - wj, — n%, ... are small,

the w’s are practically unaltered from one state to the other, and we
can replace the integral by

and emission follows the characteristic frequencies of systems them-

selves, as in electrodynamics.

From this correspondence in the large wave-length region, we can

infer that other phenomena of lines will tend asymptotically in this

region to the phenomena to be expected on ordinary dynamics. As an

illustration, we already know that Planck’s formula for radiation, which

is, as shown by W. Wilson, a formal consequence of our supposition,

tends to that of Rayleigh and Jeans in this region. We may suppose

that such phenomena as polarization and intensity of spectral lines

behave in a like manner.

Now for an electron performing the linear motion

x = A cos 2-n-ft,

(frequency f), the radiation is proportional to (xf or to A

Y

4
. We

deduce that the a priori probability of spontaneous transition from

state 1 to state 2, when integers are large and

Hi ~ Wi = r, ni -n^ = r2 ,
...,

is proportional to

A*J*IW or AV3
,

where /=

is the frequency of the emitted radiation.

We may conclude that the radiation is polarized along one direction,

also, and suppose a generalization by which, if an electron moves in

ordinary dynamics in such a way as to produce other types of polariza-

tion, the same will apply asymptotically here, directions of the harmonic

motions of the analysis replacing directions of motion of the analogous

electron in ordinary dynamics. According to this basis, the coefficients

in our harmonic analysis really determine, accurately for large wave-

lengths, and at least roughly for small ones (or small integers) the

intensities of emitted lines, by their squares. They determine at least

partially the a priori probability of transition between two states,—we
recall that the coefficients in question depend' only on the J’s, i.e. on

the integers characterizing the states.
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Such conclusions regarding polarization of components have been

found effective in the discussion of Stark and Zeeman effects. The
intensity problem is by no means in so satisfactory a condition. For
we do not know the number of atoms involved, or how to make a suit-

able choice for the amplitude A, which is some mean value of amplitude

over all the values possible in the intervening states characterized

typically by the symbol A which we introduced. The number of atoms

involved varies in ways quite unknown with a large variety of types of

experimental condition prevalent in vacuum tubes. Any intensity

determination which can be predicted is thus very rough.

This criticism, or rather failure to solve the problem, does not, how-

ever, apply in all cases, and especially in the case of a degenerate

system tested for Zeeman effect, Stark effect, or even fine-structure

under the relativity conditions. For a system, initially degenerate, in

the first place ceases to be so in the presence of a field. For example,

a hydrogen atom whose motion is in one plane has its other angular

coordinate brought into play when a field is applied. The field splits

the lines of the atom into components, each with characteristic integers.

The energies in state 1 are effectively equal, and we may suppose the

number of atoms in any state to be proportional to the probability of

that state. When this supposition is made, the results, for instance in

the intensities of lines in the case of the Stark effect, appear to support

it fairly well, so that an exception must be made, in this especial in-

stance, to our conclusion that the general problem of intensity is one

of extreme difficulty.

215. The Stark effect. In order to determine the nature of the

stationary states of an atom under the influence of some external field,

we must consider in what manner this field alters the decomposition of

the motion into a set of harmonic oscillations. For the orbit is necesj

sarily varying steadily in the presence of the field, and a set of

harmonic components may not be capable of representing the motion

at all. In other words, a certain definiteness in the stationary states

will be lost, and the effect to be looked for is a broadening of the

spectral lines* of the undisturbed atom—though any atom, at the

moment of its emission, is sending out a monochromatic radiation^

Yet cases will occur when the effect of the field is sufficiently simple

to allow a resolution into harmonic components, for example, when the

variations in the orbit are themselves periodic, and an orbit is repeated

at regular intervals. Such intervals are periods of the orbital perturba-

tions, and should, in harmonic analysis, give rise to periods which a#e

multiples of them. If we apply, further, the principle of correspondence

as used by Bohr, we see the possibility of a whole set of stationary
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states in the system with an external field, corresponding to each

individual state in the undisturbed system. In a transition between

two of these states, a radiation should be emitted whose relation to the

frequency of variation of the orbit is the same as that which occurs

in a simple periodic system in relation to its period.

Let us suppose, for instance, that a Hydrogen atom is situated in a

uniform external electric field. The orbit of its electron varies con-

tinuously both as regards its eccentricity and its major axis,—we are

regarding it, for simplicity, as moving in two dimensions in a slowly

changing ellipse. But the centre of the orbit moves in a plane perpen-

dicular to the field, and in a periodic manner. When it returns to any

starting point, the eccentricity and other features of the orbit will

recur, and the whole motion is then repeated. In this very simple case

the period of repetition depends only on the original eccentricity
(
e)

and major axis (a), and is given by
3eF

<T =
Sir maw

where F is the external force of the field, a> being the frequency of

revolution in the ellipse.

The energy difference between two states corresponding to the same
undisturbed state is a multiple of her or sh<r, so that if En is the energy

of the undisturbed state, that of any disturbed one associated with it is

E= Ejj + sha-.

Thus E=Eu +
sh . 3eF
8ir

1maw

'

Now in the undisturbed state, if the total quantum number is n.

Eu=- W= - 2 ir
2me4
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The frequency of radiation emitted in passage between two disturbed

states characterized by sly whose corresponding undisturbed states

are characterized by (nlt n2) is therefore

2it
2me4

( 1

k3
ln?

ShF
Sir

3me
iris’ - ns).

The undisturbed spectral line has, in the presence of the field, a

variety of new components whose separations are determined by all the

possible values of ris' — ns—where, as a necessary restriction, s is less

thgn w,*and s' less than ri. This formula is found experimentally to

give a complete account of the Stark effect in Hydrogen.

The strict proof of the formula, given by Epstein and Schwarzschild,
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involves the use of parabolic coordinates when the field is present, and

the evaluation of phase integrals by approximate methods. These

coordinates allow the variables to be separated after the Jacobi manner

in the equation of energy, but the investigation is very long and we do

not reproduce it. In fact, it is the most general case of a conditionally

periodic system which has been solved in this way.

The harmonic decomposition of the motion in the atom is of the

form, where £ is the displacement of the electron in any direction,

£ — 22 A r< s COS 2ir {(ro) + scr
) t + ar< s}

where w is the mean frequency in the orbit, and o- is the frequency of

the perturbations. The summation is for integer values of r and s.

When all the integers involved are large, the frequency of the line

emitted in passage from (V, s) to (/, s') is approximately

(r — r') a) + (s — s') cr.

The correspondence principle can be applied to give data regarding the

polarization of the Stark components, but this aspect of the matter is

hardly yet definite enough for detailed discussion. Reference may be

made to a recent work by Bohr*, which contains a similar account of

the Zeeman effect.

* Theory of Spectra and Atomic Constitution, Cambridge University Press, 1922.
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